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Markov Decision Process

> Sequential decision making over multiple timesteps ..

Key elements

o policy 7

o finite state space: S

o finite action space: A
@ cost function ¢
°

transition kernel P
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Markov Decision Process

> Sequential decision making over multiple timesteps ..

Key elements

o policy 7
finite state space: S
finite action space: A
cost function ¢

transition kernel P

Decision making:
@ Observe current state S; and feed into policy
@ Make A; following distribution m(-|S¢)
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Markov Decision Process

> Sequential decision making over multiple timesteps ..

Key elements
@ policy
o finite state space: S
o finite action space: A
@ cost function ¢

@ transition kernel P

Observing loss: Cy = ¢(St, Ar) € [0, 1]
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Markov Decision Process

> Sequential decision making over multiple timesteps ..

Key elements
@ policy 7
o finite state space: S
o finite action space: A
@ cost function ¢

@ transition kernel P

State transition: Sy4 follows distribution P(-|S¢, A:)

Repeat decision process ..
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Markov Decision Process

> Sequential decision making over multiple timesteps ..

Key elements
o policy ™
o finite state space: S
@ finite action space: A
@ cost function ¢
°

transition kernel P

Trajectory:
{(SO7A07 00)7 (SlvAla Cl)) ey (St7 At7 Ct)7 .. }
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Markov Decision Process

> Sequential decision making over multiple timesteps ..

Key elements
o policy ™
o finite state space: S
o finite action space: A
@ cost function ¢

@ transition kernel P

Performance (value function):
V() =Ef[X%2, 2'C [So=s]

discounting future
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Markov Decision Process

> Sequential decision making over multiple timesteps ..

Key elements
@ policy ™
o finite state space: S
o finite action space: A
@ cost function ¢

@ transition kernel P

Planning: find the optimal policy of

min V§ (s), Vs € S
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Markov Decision Process

> Sequential decision making over multiple timesteps ..

Key elements
@ policy ™
o finite state space: S
o finite action space: A
@ cost function ¢

@ transition kernel P

Planning with an equivalent objective:

min f,(m) = > s p(s)VF (s) = Non-convex
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Planning Methods for MDP

@ Linear programming based methods
e stochastic primal-dual methods

@ Dynamic programming based methods
o stochastic value iteration or Q-Learning

e can diverge even with linear approximation

© Nonlinear programming based methods

o | policy gradient methods

e much more friendly to function approximation

e Only until very recently, these methods were shown to exhibit comparable or
even superior performance guarantees than alternative methods
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Policy Gradients — Overview J
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Policy Gradients - A Basic Skeleton

First-order policy optimization:
O Eval(my) — Qp*
@ Construct gradient information G,
(8] Update(wk, Gk) — k41
Q Repeat ..
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Policy Gradients - A Basic Skeleton

Q-function:

QF (s,a) = EF 3202, 7' e(St, Ar)|So = s, Ao = a]
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Policy Gradients - A Basic Skeleton

First-order Info

* Challenges:
@ Non-convex landscape

o Transition P and cost ¢(-) can be unknown
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Policy Gradients — Existing Development

@ Deterministic setting: exact first-order information:
o Even-Dar, Kakade, Mansour '09: O(1/v/T) regret
o Agarwal, Kakade, Lee, Mahajan '19: O(1/T)
o Cen et. al. '20: linear for entropy regularized MDPs
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Policy Gradients — Existing Development

@ Deterministic setting: exact first-order information:
o Even-Dar, Kakade, Mansour '09: O(1/v/T) regret
o Agarwal, Kakade, Lee, Mahajan '19: O(1/T)
o Cen et. al. '20: linear for entropy regularized MDPs

@ Stochastic setting — sample complexity
o Agarwal, Kakade, Lee, Mahajan '19: (’)(1/54)
o Shani, Efroni, Mannor '20: O(1/¢*) and O(1/€®) for entropy regularized
MDPs
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Policy Gradients — Existing Development

@ Deterministic setting: exact first-order information:
o Even-Dar, Kakade, Mansour '09: O(1/v/T) regret
o Agarwal, Kakade, Lee, Mahajan '19: O(1/T)
o Cen et. al. '20: linear for entropy regularized MDPs

@ Stochastic setting — sample complexity

o Agarwal, Kakade, Lee, Mahajan '19: (’)(1/54)
o Shani, Efroni, Mannor '20: O(1/¢*) and O(1/€®) for entropy regularized
MDPs

@ Policy mirror descent (Lan, '21)

o Deterministic: linear for both regularized and un-regularized
o Stochastic: O(1/€2) un-regularized; O(1/¢) regularized
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I: Planning with Pre-collected Data D )

Direct approach

@ Estimate transition kernel P ~ P from D

@ Planning with estimated P
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Motivating Examples

I: Planning with Pre-collected Data D )

Direct approach

@ Estimate transition kernel P ~ P from D

@ Planning with estimated P

Subject to randomness in data collection
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Motivating Examples

I: Planning with Pre-collected Data D }

Direct approach

@ Estimate transition kernel P ~ P from D

@ Planning with estimated P

Subject to randomness in data collection

Robust approach

@ Construct P s.t. P € P with high probability

@ Planning within P to hedge against randomness

Yan Li — First-order Policy Optimization for Robust MDP 15/35
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Motivating Examples

Il: Sim-to-real Robot Training }

@ Training environment (simulation) has Psim
o Deployment (real-life) environment has Preai & Psim

@ Ultimate goal is to perform well for Pyea
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Il: Sim-to-real Robot Training }

@ Training environment (simulation) has Psim
o Deployment (real-life) environment has Preai & Psim

@ Ultimate goal is to perform well for Pyca;

Robust approach

@ Construct P based on robustness preference
o e-contamination model (Huber, '64):
P ={(1 — €)Psim + €Q : Q € Q (pre-specified)}
o Large € yields stronger robustness

@ Planning within P to hedge against environment changes
o Use only samples from interacting with Pg;p,
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Robust Markov Decision Process

> Robust Objective:

min {f;(7) = 3, cs p(s) max V¥, (s) }
V7 (s)
o Pyu(-|s,a) = Px(+]s,a) + u(:|s,a) for (s,a) e S x A

@ Pn: nominal transition kernel

@ U: index set for transition kernels (ambiguity set)
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Robust Markov Decision Process

> Robust Objective:

min {f;(7) = 3, cs p(s) max V¥, (s) }
V7 (s)
o Pyu(-|s,a) = Px(+]s,a) + u(:|s,a) for (s,a) e S x A

@ Pn: nominal transition kernel

@ U: index set for transition kernels (ambiguity set)

> Structure of Ambiguity Set:
@ (s,a)-rectangularity [our focus]:
U= H(s,a)ESXA Z/[s,a

o No coupling of uncertainties for different state-action pair
o Certain equivalence to nested robust formulation

\pproximation

Conclusion
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Robust Markov Decision Process

> Robust Objective:

min {f;(7) = 3, cs p(s) max V¥, (s) }
VT (s)
o Pyu(-|s,a) = Px(+]s,a) + u(:|s,a) for (s,a) e S x A
@ Pn: nominal transition kernel

@ U: index set for transition kernels (ambiguity set)

> Structure of Ambiguity Set:

@ (s,a)-rectangularity [our focus]:
U= H(s,a)ESXA Z/[s,a

o No coupling of uncertainties for different state-action pair
o Certain equivalence to nested robust formulation
@ Popular alternative: s-rectangularity

© General cases: NP hard

\pproximation
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17/35



Robust Markov Decision Process
[e]e]ele] }

Robust Markov Decision Process

Can we learn robust policy, while only given (stochastic) access to Pn? )

> “Access of Pn”
@ Deterministic: Py is known

@ Stochastic: can draw trajectories from Py

Yan Li — First-order Policy Optimization for Robust MDP 18/35
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Robust Markov Decision Process

Can we learn robust policy, while only given (stochastic) access to Pn? )

> “Access of Pn”
@ Deterministic: Py is known

@ Stochastic: can draw trajectories from Py

> Existing Development
@ Value based methods (vast majority):
o Tamar et. al, '14; Roy et. al, '17; Zhou et. al, '21; many others

@ Policy gradient methods (relatively few):
o Wang and Zou, '22: smoothing argument
o O(1/€3) iterations in deterministic setting

o O(1/€") samples in stochastic setting
o Tailors to special (s, a)-rectangular set

o Clearly not optimal (even U = {0})
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Robust Policy Mirror Descent: Preview }
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Preview of Results

> Robust Policy Mirror Descent

Algorithm RPMD update: 7 — 741

Input: Compute robust Q7" = max,cy Q7
Update: For every state s € S:

Tit1(+]s) = argmin, e, Me(Q7* (s, ), p) + Df, (s)

Yan Li — First-order Policy Optimization for Robust MDP 20/35
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Preview of Results

> Robust Policy Mirror Descent

Algorithm RPMD update: 7 — 741

Input: Compute robust Q7" = max,cy Q7
Update: For every state s € S:

T (|s) = argming e o , Mk (@r" (s, ), p) + D7, (5)

> Parameters and Variants
@ 7, — stepsize
o D7,.(s) = w(p) — w(mk(|s)) — (Vw(mk(-]s)), p — mx(:|s))
@ w(:): distance generating function (many choices)
@ projected gradient: w(p) = ||p||3
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Preview of Results

> Robust Policy Mirror Descent

\pproximation

Algorithm RPMD update: 7 — 741

Input: Compute robust Q7" = max,cy Q7
Update: For every state s € S:

T (|s) = argming e o , Mk (@r" (s, ), p) + D7, (5)

> Parameters and Variants
@ 7, — stepsize
o D7,.(s) = w(p) — w(mk(|s)) — (Vw(mk(-]s)), p — mx(:|s))
@ w(:): distance generating function (many choices)

@ projected gradient: w(p) = ||p||3
© natural policy gradient: w(p) = 3, ¢ 4 Pa l0g(pa):

mpr1(als) o< m(als) exp (= Q7 (s, a))

Yan Li — First-order Policy Optimization for Robust MDP
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Preview of Results

> Robust Policy Mirror Descent

Algorithm RPMD update: 7 — 741

Input: Compute robust Q7" = max,cy Q7
Update: For every state s € S:

Te+1([s) = argming,ex , me(Qr* (s,°),p) + DF, ()

> Parameters and Variants
@ 7, — stepsize
o D7,.(s) = w(p) — w(mk(|s)) — (Vw(mk(-]s)), p — mx(:|s))
@ w(:): distance generating function (many choices)

@ projected gradient: w(p) = ||p||3
© natural policy gradient: w(p) = 3, ¢ 4 Pa l0g(pa):

mpr1(als) o< m(als) exp (= Q7 (s, a))

© Tsallis divergence with index g € (0,1): w(p) = — > ,c 4Pl

@ w41 can be computed using simple bisection (Li and Lan, '23)
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Preview of Results

> Robust Policy Mirror Descent

Algorithm RPMD update: w1 — 741

Input: Compute robust Q;* = maxyey Qp"
Update: For every state s € S:

Ti+1([s) = argming,cx , M (Qr* (s,°),p) + Df, ()

@ Versatile: recovers PMD for non-robust MDP (Lan, '21)

Yan Li — First-order Policy Optimization for Robust MDP 21/35
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Preview of Results

> Robust Policy Mirror Descent

Algorithm RPMD update: w1 — 741

Input: Compute robust Q;* = maxyey Qp"
Update: For every state s € S:

Ti+1([s) = argming,cx , M (Qr* (s,°),p) + Df, ()

@ Versatile: recovers PMD for non-robust MDP (Lan, '21)

@ Efficient:

o Deterministic setting (exact QT) (1og(1 €)) iterations
o Stochastic setting (estimated Q;*): O(1/€?) samples
o Optimal dependence on ¢

Yan Li — First-order Policy Optimization for Robust MDP 21/35



Robust Policy Mirror Descent
O00@00000000

First-order Viewpoint and Intuitions }
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Issues with Policy Gradients

> Not-so-friendly Landscape
@ V] (s) is only almost everywhere (Hausdorff sense) differentiable

@ Need to handle potential non-smoothness/non-differentiability

Yan Li — First-order Policy Optimization for Robust MDP 23/35
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Issues with Policy Gradients

> Not-so-friendly Landscape
@ V] (s) is only almost everywhere (Hausdorff sense) differentiable

@ Need to handle potential non-smoothness/non-differentiability

> Additional Issues

@ The analytic form of gradient (if exists):

Vir(m)[s,a] = ﬁd;’u" (5)Qr (s,a)
o dF(s) = (1= 7) Dyres S50 7p(s/)Prob™ = (S, = 5|80 = ')
e needs worst kernel P, of 7 — difficult to compute/estimate

Ug

Conclusion
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Issues with Policy Gradients

> Not-so-friendly Landscape
@ V] (s) is only almost everywhere (Hausdorff sense) differentiable

@ Need to handle potential non-smoothness/non-differentiability

> Additional Issues

@ The analytic form of gradient (if exists):

Vi (m)ls,al = £ 5 (5)Q7 (s, a)

o dF(s) = (1= 7) Dyres S50 7p(s/)Prob™ = (S, = 5|80 = ')
e needs worst kernel P, of 7 — difficult to compute/estimate

@ Unclear whether gradient stationarity implies global optimality

o Special case discussed in Wang and Zou, '21
o Local-to-global conversion already non-optimal in non-robust case
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Issues with Policy Gradients

> Not-so-friendly Landscape
@ V] (s) is only almost everywhere (Hausdorff sense) differentiable

@ Need to handle potential non-smoothness/non-differentiability

> Additional Issues

@ The analytic form of gradient (if exists):

Vir(m)[s,a] = ﬁd;’u" (5)Qr (s,a)
o dF(s) = (1= 7) Dyres S50 7p(s/)Prob™ = (S, = 5|80 = ')
e needs worst kernel P, of 7 — difficult to compute/estimate

@ Unclear whether gradient stationarity implies global optimality

o Special case discussed in Wang and Zou, '21
o Local-to-global conversion already non-optimal in non-robust case

* Need alternative first-order information *

\

Yan Li — First-order Policy Optimization for Robust MDP 23/35
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“Useful” First-order Information

* Robust Q-function as “Subgradient” * }

> Local Improvement
’
VI () = ViT(8) S T5E |, (@7 =),

1—v s/~

@ Following —Q7 improves the value
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“Useful” First-order Information

* Robust Q-function as “Subgradient” *

> Local Improvement

VI (s) = Vi (s) < T=E

1 < ™ /_ >
T—v s’~d:/’u7\" Qr,m )

@ Following —Q7 improves the value

> Global Convergence

E,, oo (@7 —7,] = (1=9) (V7 (5) = V7 (9))

@ ()7 provides enough information on optimality gap
* Proper state aggregation is required
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“Useful” First-order Information

* Robust Q-function as “Subgradient” *

> Local Improvement

VI (s) = Vi (s) < T=E

1 ki !

1—v slwdﬂ-/’uﬂ" <Q7~,’/T _7T>s’
s

@ Following —Q7 improves the value

> Global Convergence

E,, oo (@7 —7,] = (1=9) (V7 (5) = V7 (9))

@ ()7 provides enough information on optimality gap
* Proper state aggregation is required

> @ bears great similarities of subgradients for convex problems

Yan Li — First-order Policy Optimization for Robust MDP

24/35
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Robust Policy Mirror Descent: Deterministic Setting }
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Convergence Characterization

Let M = sup, ey lld5 " /plloe and M = sup,, ey lld " /dg ™ ||oo- In
RPMD, choosing ni > mi—1 (1 — 1_77)71 M’ yields

Folme) = fo(x*) < (1= 0. 0(1)
——

from initialization

@ First linear rate for first-order policy based method

Yan Li — First-order Policy Optimization for Robust MDP 26/35
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Convergence Characterization

Let M = sup, ey lld5 " /plloe and M = sup,, ey lld " /dg ™ ||oo- In
RPMD, choosing ni > mi—1 (1 — 1_7"’)71 M’ yields

Folme) = fo(x*) < (1= 0. 0(1)
——

from initialization

@ First linear rate for first-order policy based method

@ Subsumes the special case of non-robust MDPs

M = |ldg /plle, M"=1.
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Convergence Characterization

Let M = sup, ey lld5 " /plloe and M = sup,, ey lld " /dg ™ ||oo- In
RPMD, choosing ni > mi—1 (1 — 1_7"’)71 M’ yields

Folme) = fo(x*) < (1= 0. 0(1)
——

from initialization

@ First linear rate for first-order policy based method

@ Subsumes the special case of non-robust MDPs

M = |ldg /plle, M"=1.

© Unclear whether dependence on M is tight

o Appears also for non-robust MDP with linear rate
o Seems removable with a sublinear rate

Yan Li — First-order Policy Optimization for Robust MDP 26/35
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Robust Policy Mirror Descent: Stochastic Setting }
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Stochastic Robust Policy Mirror Descent

Algorithm SRPMD update: 7, — 41

Input: Evaluate Q1" % ~ Q"
Update: For every state s € S:

Tet1(+[s) = argmin, e 5 , M (QrF %+ (s, ), p) + D2, (s)

Yan Li — First-order Policy Optimization for Robust MDP 28/35
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Stochastlc Robust Pollcy Mirror Descent

Algorithm SRPMD update: 7, — 41

Input: Evaluate Q1" % ~ Q"
Update: For every state s € S:

o1 (]s) = argming e, me(Q74 (s,-), p) + DE, (s)

With the same stepsize as RPMD, if B¢, ||Q7* %% — Q7" || < € for all k > 0,
then

Elf(m) = f(r)] < (1= 52)" - 0(1)  +¢s,
~——

from initialization

Yan Li — First-order Policy Optimization for Robust MDP 28/35
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Stochastlc Robust Pollcy Mirror Descent

Algorithm SRPMD update: 7, — 41

Input: Evaluate Q1" % ~ Q"
Update: For every state s € S:

o1 (]s) = argming e, me(Q74 (s,-), p) + DE, (s)

With the same stepsize as RPMD, if B¢, ||Q7* %% — Q7" || < € for all k > 0,
then

Elf(m) = f(r)] < (1= 52)" - 0(1)  +¢s,
~——

from initialization

> Converges up to the noise level
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Stochastic Robust Policy Mirror Descent

Algorithm SRPMD update: 7, — 41

Input: Evaluate Q1" % ~ Q"
Update: For every state s € S:

Tet1(+[s) = argmin, e 5 , M (QrF %+ (s, ), p) + D2, (s)

With the same stepsize as RPMD, if B¢, ||Q7* %% — Q7" || < € for all k > 0,

then

Elf(m) = f(r)] < (1= 52)" - 0(1)  +¢s,
~——

from initialization

> Converges up to the noise level

> Need to interact with PN to learn robust Q-function

Yan Li — First-order Policy Optimization for Robust MDP 28/35
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Learning the Robust Q-function

Exploiting Access to Py )

Algorithm Robust Temporal Difference Learning: m — Q¢

fort=0,1,... do
Collect st+1 ~ Px(+|s¢t, a¢), and make action asy1 ~ 7(+|St41)
Update:

Ory1 =0+ o [C(Sty ai) + Y0:(Se41, ars1)
+ 0w, 0, (M(7,0:)) = 0u(st, ar) | e(se, ar)

end for

@ ox() is the support function of X
o [M(m,x)](s) = > ,ca7(als)z(s,a) for s €S

Yan Li — First-order Policy Optimization for Robust MDP 29/35
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Learning the Robust Q-function

Exploiting Access to Py )

Algorithm Robust Temporal Difference Learning: m — Q¢

fort=0,1,... do
Collect st+1 ~ Px(+|s¢t, a¢), and make action asy1 ~ 7(+|St41)
Update:

Ory1 =0+ o [C(Sty ai) + Y0:(Se41, ars1)

+ (J’z/(.qtmt (]\4-(71' 9,5)) — Gt(st, at)]e(st, at)

end for

@ ox() is the support function of X
o [M(m,x)](s) = > ,ca7(als)z(s,a) for s €S
@ When U = {0}, reduces to standard TD

Yan Li — First-order Policy Optimization for Robust MDP 29/35
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Learning the Robust Q-function

Exploiting Access to Py )

Algorithm Robust Temporal Difference Learning: m — Q¢

fort=0,1,... do
Collect st+1 ~ Px(+|s¢t, a¢), and make action asy1 ~ 7(+|St41)
Update:

Ory1 =0+ o [C(Sty ai) + Y0:(Se41, ars1)

+ (J’z/(.qtmt (]\4-(71' 9,5)) — Gt(st, at)]e(st, at)

end for

@ ox() is the support function of X
o [M(m,x)](s) = > ,ca7(als)z(s,a) for s €S
@ When U = {0}, reduces to standard TD

@ Can be easily adapted for e-contamination model
o Unbiased robust Bellman evaluation operator is available
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> Sample complexity of Robust TD

Proposition

For any € > 0, with properly chosen «, the RTD method needs at most

T — 5( log2(1/e€) )

5,3 <2
(1=7)°vine

iterations to find an estimate O satisfying E¢||0r — Q7 || < €.

Yan Li — First-order Policy Optimization for Robust MDP 30/35



MDP and Policy Optin Robust Policy Mirror Descent

00000000000 e

Sample Complexity of RTD and SRPMD

> Sample complexity of Robust TD

Proposition

For any € > 0, with properly chosen «, the RTD method needs at most

T-0 ( log?(1/¢) 2)

5,3
(1=7)°vine

iterations to find an estimate O satisfying E¢||0r — Q7 || < €.

> Sample complexity of SRPMD

With the same stepsize chosen as before, total number of samples required by
SRPMD for finding an e-optimal policy can be bounded by

& <M3 log2(4M/(€(1—7)2))) ‘

10,3 2
A=) Oviine

@ We believe the dependence on (1 —~) ! can be improved

Yan Li — First-order Policy Optimization for Robust MDP 30/35



Planning with Function Approximation
[ Je]e]e]

Robust Policy Mirror Descent: (Linear) Function Approximation )
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Preview of Linear Approximation

> The essential target: Find 6™ so that

() 67 QT () lloe
\ﬁ;—/

can be controlled.

Isn’t linear function approximation easy? }
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Preview of Linear Approximation

> The essential target: Find 6™ so that

() 67 QT () lloe
\ﬁ;—/

can be controlled.

Isn’t linear function approximation easy? }

O Fixed-point (contraction) based:

Qs =11, T"Q5 — 07

o 7™ — Robust Bellman operator of Q7

o II4 , — the projection onto span(¥) in [ - ||,
o Ily , 7™ — a contraction

o Roots of TD and many variants
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Preview of Linear Approximation

> The essential target: Find 6™ so that

() 67 QT () lloe
\ﬁ;—/

can be controlled.

Isn’t linear function approximation easy? }

O Fixed-point (contraction) based:

Qs =11, T"Q5 — 07

o 7™ — Robust Bellman operator of Q7

o II4 , — the projection onto span(¥) in [ - ||,
o Ily , 7™ — a contraction

o Roots of TD and many variants

@ Minimize Bellman residual:
min Q5 () = T"Q5 (I — 0

e Easily combined and nonlinear approximations (e.g., NNs)

Yan Li — First-order Policy Optimization for Robust MDP 32/35



Planning with Function Approximation
[e]e] o]

Difficulties of Linear Approximation

Why is linear function approximation difficult (for robust evaluation)? J
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Difficulties of Linear Approximation

Why is linear function approximation difficult (for robust evaluation)? J

@ Fixed-point (contraction) based:

Qg - H(ﬁ,umbusth}r 7‘{97"

T _ i
o bust — Bellman operator of Q
v Tmbust — NOT a contraction
Does not even have a solution
Robust TD diverges with linear approximation
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Difficulties of Linear Approximation

Why is linear function approximation difficult (for robust evaluation)? J

@ Fixed-point (contraction) based:

Qg - Hcﬁ,uﬂbustQZ{ 7‘{97"

T _ ™

o bust — Bellman operator of Q

v Tmbust — NOT a contractlon
Does not even have a solution

°
°
]
@ Robust TD diverges with linear approximation

@ Minimize Bellman residual:

mein ||Qg(7 ) - 7?’(.l)-busth(U )”g 7{9‘”

e Non-convex in 6
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Difficulties of Linear Approximation

Why is linear function approximation difficult (for robust evaluation)? }

@ Fixed-point (contraction) based:

Qg - Hcﬁ,l/mbusth 7{977

T _ ™

o bust — Bellman operator of Q

v Tmbust — NOT a contraction
Does not even have a solution

°
°
]
@ Robust TD diverges with linear approximation

@ Minimize Bellman residual:

mgin ||Qg(7 ) - 7?’(.l)-busth(U )”g 7{0‘”

e Non-convex in 6

Current Development

No assumption-free convergent method for robust policy evaluation even
in the deterministic setting
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Robust Evaluation as Policy Optimization

> MDP of Nature:
@ State space: S x A
@ Action space: Us,q for each (s,a)

o Transition: transition of {(s¢, a:)} generated by 7 deployed in P}, where u
is determined by nature's policy

o Cost: —c(s,a)
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> MDP of Nature:
@ State space: S x A
@ Action space: Us,q for each (s,a)

o Transition: transition of {(s¢, a:)} generated by 7 deployed in P}, where u
is determined by nature's policy

o Cost: —c(s,a)

> Observation: optimal value function of nature equals to —Q7 (s, a)

Question: can we optimize nature’s MDP efficiently? J
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Robust Evaluation as Policy Optimization

> MDP of Nature:
@ State space: S x A
@ Action space: Us,q for each (s,a)

o Transition: transition of {(s¢, a:)} generated by 7 deployed in P}, where u
is determined by nature's policy

o Cost: —c(s,a)

> Observation: optimal value function of nature equals to —Q7 (s, a)

Question: can we optimize nature’s MDP efficiently? J

Yes, O(1/€*) sample suffices, even with linear approximation.

Also can be incorporated with NNs.
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Summary

© RPMD for robust MDP with (s, a)-rectangular ambiguity
o Simple implementation
o Subsumes planning of non-robust MDP
@ Deterministic setting: O(log(1/€)) iterations
© Stochastic setting:
o Convergence up to noise level
o O(1/€?) sample complexity
@ Evaluation with linear approximation:
o O(1/€?) sample complexity
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Summary

© RPMD for robust MDP with (s, a)-rectangular ambiguity
o Simple implementation
o Subsumes planning of non-robust MDP

@ Deterministic setting: O(log(1/¢)) iterations
© Stochastic setting:
o Convergence up to noise level
o O(1/€?) sample complexity
@ Evaluation with linear approximation:
o O(1/€?) sample complexity
O Potential directions:
o Sample limit of policy gradients for robust MDP

— dependence on the effective horizon (lower/upper bounds)
o s- and r-rectangular ambiguity sets
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© RPMD for robust MDP with (s, a)-rectangular ambiguity
o Simple implementation
o Subsumes planning of non-robust MDP

@ Deterministic setting: O(log(1/¢)) iterations

© Stochastic setting:
o Convergence up to noise level
o O(1/€?) sample complexity
@ Evaluation with linear approximation:
o O(1/€?) sample complexity
O Potential directions:
o Sample limit of policy gradients for robust MDP

— dependence on the effective horizon (lower/upper bounds)
o s- and r-rectangular ambiguity sets
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