First-order Policy Optimization for Robust Markov Decision Process

Yan Li

Georgia Institute of Technology

Joint work with George Lan, Tuo Zhao

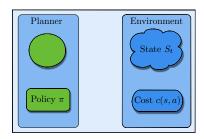
Markov Decision Process & Policy Optimization

MDP and Policy Optimization 00000000000

▶ Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- finite action space: A
- ullet cost function c
- transition kernel P

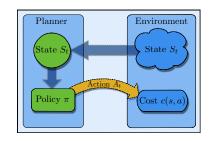


MDP and Policy Optimization

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- cost function c
- transition kernel P



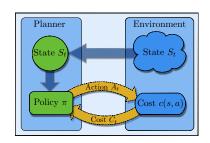
Decision making:

- lacktriangle Observe current state S_t and feed into policy
- ② Make A_t following distribution $\pi(\cdot|S_t)$

▷ Sequential decision making over multiple timesteps ..

Key elements

- ullet policy π
- ullet finite state space: ${\cal S}$
- finite action space: \mathcal{A}
- ullet cost function c
- transition kernel P



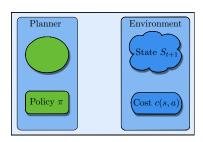
Observing loss: $C_t = c(S_t, A_t) \in [0, 1]$

MDP and Policy Optimization 000000000000

▷ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- finite state space: \mathcal{S}
- finite action space: A
- cost function c
- transition kernel P



State transition: S_{t+1} follows distribution $\mathbb{P}(\cdot|S_t, A_t)$

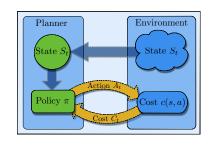
Repeat decision process ...

MDP and Policy Optimization 000000000000

▷ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- finite state space: \mathcal{S}
- finite action space: A
- cost function c
- transition kernel P



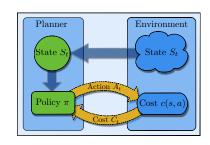
Trajectory:

$$\{(S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_t, A_t, C_t), \dots\}$$

> Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- ullet cost function c
- transition kernel P



Performance (value function):

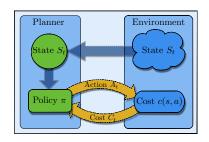
$$V_{\mathbb{P}}^{\pi}(s) = \mathbb{E}_{\mathbb{P}}^{\pi} \left[\sum_{t=0}^{\infty} \underbrace{\gamma^t C_t}_{ ext{discounting future}} \left| S_0 = s
ight]$$

MDP and Policy Optimization 000000000000

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- finite action space: A
- cost function c
- transition kernel P



Planning: find the optimal policy of

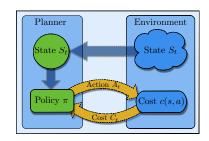
$$\min_{\pi} V_{\mathbb{P}}^{\pi}(s), \ \forall s \in \mathcal{S}$$

MDP and Policy Optimization 000000000000

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- finite action space: A
- cost function c
- transition kernel P



Planning with an equivalent objective:

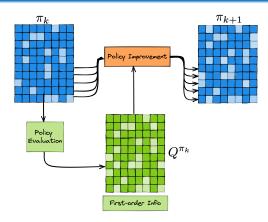
$$\min_{\pi} f_{\rho}(\pi) = \sum_{s \in \mathcal{S}} \rho(s) V_{\mathbb{P}}^{\pi}(s) \quad \Rightarrow \quad \underline{\text{Non-convex}}$$

MDP and Policy Optimization 000000000000

- Linear programming based methods
 - stochastic primal-dual methods
- Oynamic programming based methods
 - stochastic value iteration or Q-Learning
 - can diverge even with linear approximation
- Nonlinear programming based methods
 - policy gradient methods
 - much more friendly to function approximation
 - Only until very recently, these methods were shown to exhibit comparable or even superior performance guarantees than alternative methods

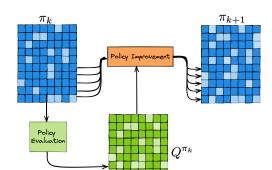
Policy Gradients - Overview

Policy Gradients - A Basic Skeleton



First-order policy optimization:

- ② Construct gradient information G_k
- \bigcirc Update $(\pi_k, G_k) \to \pi_{k+1}$
- 4 Repeat ...



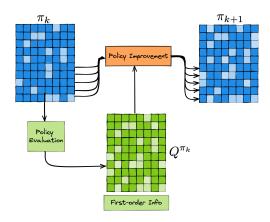
Q-function:

MDP and Policy Optimization 000000000000

$$Q_{\mathbb{P}}^{\pi}(s, a) = \mathbb{E}_{\mathbb{P}}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

First-order Info

Policy Gradients - A Basic Skeleton



* Challenges:

- Non-convex landscape
- Transition \mathbb{P} and cost $c(\cdot)$ can be unknown

- Deterministic setting: exact first-order information:
 - Even-Dar, Kakade, Mansour '09: $\mathcal{O}(1/\sqrt{T})$ regret
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/T)$
 - Cen et. al. '20: linear for entropy regularized MDPs

- Open Deterministic setting: exact first-order information:
 - Even-Dar, Kakade, Mansour '09: $\mathcal{O}(1/\sqrt{T})$ regret
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/T)$
 - Cen et. al. '20: linear for entropy regularized MDPs
- Stochastic setting sample complexity
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/\epsilon^4)$
 - Shani, Efroni, Mannor '20: $\mathcal{O}(1/\epsilon^4)$ and $\mathcal{O}(1/\epsilon^3)$ for entropy regularized **MDPs**

Policy Gradients – Existing Development

- Open Deterministic setting: exact first-order information:
 - Even-Dar, Kakade, Mansour '09: $\mathcal{O}(1/\sqrt{T})$ regret
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/T)$
 - Cen et. al. '20: linear for entropy regularized MDPs
- Stochastic setting sample complexity
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/\epsilon^4)$
 - Shani, Efroni, Mannor '20: $\mathcal{O}(1/\epsilon^4)$ and $\mathcal{O}(1/\epsilon^3)$ for entropy regularized **MDPs**
- Olicy mirror descent (Lan, '21)
 - Deterministic: linear for both regularized and un-regularized
 - Stochastic: $\mathcal{O}(1/\epsilon^2)$ un-regularized; $\mathcal{O}(1/\epsilon)$ regularized

I: Planning with Pre-collected Data \mathcal{D}

Direct approach

- ① Estimate transition kernel $\widehat{\mathbb{P}} \approx \mathbb{P}$ from \mathcal{D}
- **2** Planning with estimated $\widehat{\mathbb{P}}$

Motivating Examples

I: Planning with Pre-collected Data $\mathcal D$

Direct approach

- ① Estimate transition kernel $\widehat{\mathbb{P}} \approx \mathbb{P}$ from \mathcal{D}
- 2 Planning with estimated $\widehat{\mathbb{P}}$

Subject to randomness in data collection

Motivating Examples

I: Planning with Pre-collected Data $\mathcal D$

Direct approach

- ① Estimate transition kernel $\widehat{\mathbb{P}} \approx \mathbb{P}$ from \mathcal{D}
- 2 Planning with estimated $\widehat{\mathbb{P}}$

Subject to randomness in data collection

Robust approach

- **①** Construct \mathcal{P} s.t. $\mathbb{P} \in \mathcal{P}$ with high probability
- 2 Planning within \mathcal{P} to hedge against randomness

- \bullet Training environment (simulation) has $\mathbb{P}_{\rm sim}$
- \bullet Deployment (real-life) environment has $\mathbb{P}_{\rm real} \approx \mathbb{P}_{\rm sim}$
- ullet Ultimate goal is to perform well for $\mathbb{P}_{\mathrm{real}}$

Motivating Examples

II: Sim-to-real Robot Training

- Training environment (simulation) has $\mathbb{P}_{\mathrm{sim}}$
- Deployment (real-life) environment has $\mathbb{P}_{\text{real}} \approx \mathbb{P}_{\text{sim}}$
- Ultimate goal is to perform well for \mathbb{P}_{real}

Robust approach

- \bigcirc Construct \mathcal{P} based on robustness preference
 - ε-contamination model (Huber, '64):

$$\mathcal{P} = \{(1 - \epsilon)\mathbb{P}_{sim} + \epsilon \mathbb{Q} : \mathbb{Q} \in \mathcal{Q} \text{ (pre-specified)}\}$$

- Large ϵ yields stronger robustness
- 2 Planning within \mathcal{P} to hedge against environment changes
 - ullet Use only samples from interacting with $\mathbb{P}_{\mathrm{sim}}$

▶ Robust Objective:

$$\min_{\pi} \left\{ f_r(\pi) \coloneqq \sum_{s \in \mathcal{S}} \rho(s) \underbrace{\max_{u \in \mathcal{U}} V_{\mathbb{P}_u}^{\pi}(s)}_{V_r^{\pi}(s)} \right\}$$

- $\mathbb{P}_u(\cdot|s,a) = \mathbb{P}_N(\cdot|s,a) + u(\cdot|s,a)$ for $(s,a) \in \mathcal{S} \times \mathcal{A}$
- ullet \mathbb{P}_{N} : nominal transition kernel
- U: index set for transition kernels (ambiguity set)

▶ Robust Objective:

$$\min_{\pi} \left\{ f_r(\pi) \coloneqq \sum_{s \in \mathcal{S}} \rho(s) \underbrace{\max_{u \in \mathcal{U}} V_{\mathbb{P}_u}^{\pi}(s)}_{V_r^{\pi}(s)} \right\}$$

- $\mathbb{P}_u(\cdot|s,a) = \mathbb{P}_N(\cdot|s,a) + u(\cdot|s,a)$ for $(s,a) \in \mathcal{S} \times \mathcal{A}$
- ullet \mathbb{P}_{N} : nominal transition kernel
- U: index set for transition kernels (ambiguity set)

▷ Structure of Ambiguity Set:

(s, a)-rectangularity [our focus]:

$$\mathcal{U} = \Pi_{(s,a) \in \mathcal{S} \times \mathcal{A}} \mathcal{U}_{s,a}$$

- No coupling of uncertainties for different state-action pair
- Certain equivalence to nested robust formulation

▶ Robust Objective:

$$\min_{\pi} \left\{ f_r(\pi) \coloneqq \sum_{s \in \mathcal{S}} \rho(s) \underbrace{\max_{u \in \mathcal{U}} V_{\mathbb{P}_u}^{\pi}(s)}_{V_r^{\pi}(s)} \right\}$$

- $\mathbb{P}_u(\cdot|s,a) = \mathbb{P}_N(\cdot|s,a) + u(\cdot|s,a)$ for $(s,a) \in \mathcal{S} \times \mathcal{A}$
- ullet \mathbb{P}_N : nominal transition kernel
- ullet \mathcal{U} : index set for transition kernels (ambiguity set)

> Structure of Ambiguity Set:

 $oldsymbol{0}$ (s,a)-rectangularity [our focus]:

$$\mathcal{U} = \Pi_{(s,a) \in \mathcal{S} \times \mathcal{A}} \mathcal{U}_{s,a}$$

- No coupling of uncertainties for different state-action pair
- Certain equivalence to nested robust formulation
- 2 Popular alternative: s-rectangularity
- General cases: NP hard

Can we learn robust policy, while only given (stochastic) access to \mathbb{P}_N ?

- $\, \triangleright \, \, \text{``Access of } \mathbb{P}_N \text{''}$
 - ① Deterministic: \mathbb{P}_{N} is known
- $oldsymbol{0}$ Stochastic: can draw trajectories from \mathbb{P}_N

Can we learn robust policy, while only given (stochastic) access to \mathbb{P}_N ?

- $\, \triangleright \, \, \text{``Access of } \mathbb{P}_N \text{''}$
 - lacksquare Deterministic: \mathbb{P}_N is known
 - $oldsymbol{Q}$ Stochastic: can draw trajectories from \mathbb{P}_{N}
- - Value based methods (vast majority):
 - Tamar et. al, '14; Roy et. al, '17; Zhou et. al, '21; many others
 - 2 Policy gradient methods (relatively few):
 - Wang and Zou, '22: smoothing argument
 - $\mathcal{O}(1/\epsilon^3)$ iterations in deterministic setting
 - $\mathcal{O}(1/\epsilon^7)$ samples in stochastic setting
 - Tailors to special (s, a)-rectangular set
 - Clearly not optimal (even $\mathcal{U} = \{0\}$)

Robust Policy Mirror Descent: Preview

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{u \in \mathcal{U}} Q_{\mathbb{P}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{u \in \mathcal{U}} Q_p^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Parameters and Variants

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - w(·): distance generating function (many choices)
 - 2 projected gradient: $w(p) = ||p||_2^2$

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{u \in \mathcal{U}} Q_p^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Parameters and Variants

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - w(·): distance generating function (many choices)
 - 2 projected gradient: $w(p) = ||p||_2^2$
 - onatural policy gradient: $w(p) = \sum_{a \in A} p_a \log(p_a)$:

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp\left(-\eta_k Q_r^{\pi_k}(s,a)\right)$$

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{u \in \mathcal{U}} Q_{\mathbb{D}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Parameters and Variants

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - w(·): distance generating function (many choices)
 - 2 projected gradient: $w(p) = ||p||_2^2$
 - onatural policy gradient: $w(p) = \sum_{a \in A} p_a \log(p_a)$:

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp\left(-\eta_k Q_r^{\pi_k}(s,a)\right)$$

- Tsallis divergence with index $q \in (0,1)$: $w(p) = -\sum_{a \in A} p_a^p$
 - π_{k+1} can be computed using simple bisection (Li and Lan, '23)

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{u \in \mathcal{U}} Q_p^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s,\cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

1 Versatile: recovers PMD for non-robust MDP (Lan, '21)

Preview of Results

▶ Robust Policy Mirror Descent

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} \coloneqq \max_{u \in \mathcal{U}} Q_{\mathbb{P}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s,\cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

- Versatile: recovers PMD for non-robust MDP (Lan, '21)
- @ Efficient:
 - Deterministic setting (exact $Q_r^{\pi_k}$): $\mathcal{O}(\log(1/\epsilon))$ iterations Stochastic setting (estimated $Q_r^{\pi_k}$): $\mathcal{O}(1/\epsilon^2)$ samples

 - ullet Optimal dependence on ϵ

First-order Viewpoint and Intuitions

- ▶ Not-so-friendly Landscape
 - f 0 $V^\pi_r(s)$ is only almost everywhere (Hausdorff sense) differentiable
 - 2 Need to handle potential non-smoothness/non-differentiability

▶ Not-so-friendly Landscape

- $V_r^{\pi}(s)$ is only almost everywhere (Hausdorff sense) differentiable
- Need to handle potential non-smoothness/non-differentiability

▶ Additional Issues

• The analytic form of gradient (if exists):

$$\nabla f_r(\pi)[s,a] = \frac{1}{1-\gamma} d_\rho^{\pi,u_\pi}(s) Q_r^{\pi}(s,a)$$

- $d_{\rho}^{\pi,u_{\pi}}(s) := (1-\gamma) \sum_{s' \in S} \sum_{t=0}^{\infty} \gamma^{t} \rho(s') \operatorname{Prob}^{\pi,u_{\pi}}(S_{t} = s | S_{0} = s')$
- needs worst kernel $\mathbb{P}_{u_{\pi}}$ of π difficult to compute/estimate

▶ Not-so-friendly Landscape

- $V_r^{\pi}(s)$ is only almost everywhere (Hausdorff sense) differentiable
- Need to handle potential non-smoothness/non-differentiability

Additional Issues

• The analytic form of gradient (if exists):

$$\nabla f_r(\pi)[s,a] = \frac{1}{1-\gamma} d_\rho^{\pi,u_\pi}(s) Q_r^{\pi}(s,a)$$

- $d_{\rho}^{\pi,u_{\pi}}(s) := (1-\gamma) \sum_{s' \in S} \sum_{t=0}^{\infty} \gamma^{t} \rho(s') \operatorname{Prob}^{\pi,u_{\pi}}(S_{t} = s | S_{0} = s')$
- needs worst kernel $\mathbb{P}_{u_{\pi}}$ of π difficult to compute/estimate
- Unclear whether gradient stationarity implies global optimality
 - Special case discussed in Wang and Zou, '21
 - Local-to-global conversion already non-optimal in non-robust case

▶ Not-so-friendly Landscape

- $V_r^{\pi}(s)$ is only almost everywhere (Hausdorff sense) differentiable
- Need to handle potential non-smoothness/non-differentiability

Additional Issues

• The analytic form of gradient (if exists):

$$\nabla f_r(\pi)[s,a] = \frac{1}{1-\gamma} d_\rho^{\pi,u_\pi}(s) Q_r^{\pi}(s,a)$$

- $d_{\rho}^{\pi,u_{\pi}}(s) := (1-\gamma) \sum_{s' \in S} \sum_{t=0}^{\infty} \gamma^{t} \rho(s') \operatorname{Prob}^{\pi,u_{\pi}}(S_{t} = s | S_{0} = s')$
- needs worst kernel $\mathbb{P}_{u_{\pi}}$ of π difficult to compute/estimate
- Unclear whether gradient stationarity implies global optimality
 - Special case discussed in Wang and Zou, '21
 - Local-to-global conversion already non-optimal in non-robust case
 - * Need alternative first-order information *

* Robust Q-function as "Subgradient" *

Local Improvement

$$V_r^{\pi'}(s) - V_r^{\pi}(s) \le \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d_s^{\pi'}, u_{\pi'}} \langle Q_r^{\pi}, \pi' - \pi \rangle_{s'}$$

• Following $-Q_r^{\pi}$ improves the value

▶ Local Improvement

$$V_r^{\pi'}(s) - V_r^{\pi}(s) \le \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d_s^{\pi'}, u_{\pi'}} \langle Q_r^{\pi}, \pi' - \pi \rangle_{s'}$$

- Following $-Q_r^\pi$ improves the value
- **⊳ Global Convergence**

$$\mathbb{E}_{s' \sim d_s^{\pi^*, u_{\pi}}} \left[\langle Q_r^{\pi}, \pi - \pi^* \rangle_{s'} \right] \ge (1 - \gamma) \left(V_r^{\pi}(s) - V_r^{\pi^*}(s) \right)$$

- $ullet Q_r^\pi$ provides enough information on optimality gap
 - * Proper state aggregation is required

"Useful" First-order Information

* Robust Q-function as "Subgradient" *

▶ Local Improvement

$$V_r^{\pi'}(s) - V_r^{\pi}(s) \le \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d_s^{\pi'}, u_{\pi'}} \langle Q_r^{\pi}, \pi' - \pi \rangle_{s'}$$

- Following $-Q_r^\pi$ improves the value
- **⊳ Global Convergence**

$$\mathbb{E}_{s' \sim d_s^{\pi^*, u_{\pi}}} \left[\langle Q_r^{\pi}, \pi - \pi^* \rangle_{s'} \right] \ge (1 - \gamma) \left(V_r^{\pi}(s) - V_r^{\pi^*}(s) \right)$$

- $\bullet \ Q_r^\pi$ provides enough information on optimality gap
 - * Proper state aggregation is required
- $hd Q_r^\pi$ bears great similarities of subgradients for convex problems

Robust Policy Mirror Descent: Deterministic Setting

Theorem

Let
$$M = \sup_{u \in \mathcal{U}} \|d_{\rho}^{\pi^*,u}/\rho\|_{\infty}$$
 and $M' = \sup_{u,u' \in \mathcal{U}} \|d_{\rho}^{\pi^*,u}/d_{\rho}^{\pi^*,u'}\|_{\infty}$. In RPMD, choosing $\eta_k \geq \eta_{k-1} \left(1 - \frac{1-\gamma}{M}\right)^{-1} M'$ yields
$$f_{\rho}(\pi_k) - f_{\rho}(\pi^*) \leq \left(1 - \frac{1-\gamma}{M}\right)^k \cdot \mathcal{O}(1)$$

$$\rho(N_k) - J_\rho(N_k) \le \left(1 - \frac{1}{M}\right)$$
 from initialization

First linear rate for first-order policy based method

Convergence Characterization

Theorem

Let
$$M = \sup_{u \in \mathcal{U}} \|d_{\rho}^{\pi^*,u}/\rho\|_{\infty}$$
 and $M' = \sup_{u,u' \in \mathcal{U}} \|d_{\rho}^{\pi^*,u}/d_{\rho}^{\pi^*,u'}\|_{\infty}$. In RPMD, choosing $\eta_k \geq \eta_{k-1} \left(1 - \frac{1-\gamma}{M}\right)^{-1} M'$ yields

$$f_{\rho}(\pi_k) - f_{\rho}(\pi^*) \le \left(1 - \frac{1 - \gamma}{M}\right)^k \cdot \underbrace{\mathcal{O}(1)}_{from \ initialization}$$

- First linear rate for first-order policy based method
- Subsumes the special case of non-robust MDPs

$$M = \|d_{\rho}^{\pi^*}/\rho\|_{\infty}, \ M' = 1.$$

Convergence Characterization

Theorem

Let $M = \sup_{u \in \mathcal{U}} \|d_{\rho}^{\pi^*, u}/\rho\|_{\infty}$ and $M' = \sup_{u, u' \in \mathcal{U}} \|d_{\rho}^{\pi^*, u}/d_{\rho}^{\pi^*, u'}\|_{\infty}$. In RPMD, choosing $\eta_k > \eta_{k-1} \left(1 - \frac{1-\gamma}{M}\right)^{-1} M'$ yields

$$f_{\rho}(\pi_k) - f_{\rho}(\pi^*) \le \left(1 - \frac{1 - \gamma}{M}\right)^k \cdot \underbrace{\mathcal{O}(1)}_{from \ initialization}$$

- First linear rate for first-order policy based method
- Subsumes the special case of non-robust MDPs

$$M = \|d_{\rho}^{\pi^*}/\rho\|_{\infty}, \ M' = 1.$$

- **3** Unclear whether dependence on M is tight
 - Appears also for non-robust MDP with linear rate
 - Seems removable with a sublinear rate

Robust Policy Mirror Descent: Stochastic Setting

Input: Evaluate $\widehat{Q}_r^{\pi_k,\xi_k} \approx Q_r^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k, \xi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Input: Evaluate $\widehat{Q}_r^{\pi_k,\xi_k} \approx Q_r^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_A} \eta_k \langle Q_r^{\pi_k, \xi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Theorem

With the same stepsize as RPMD, if $\mathbb{E}_{\xi_k} \|Q_r^{\pi_k, \xi_k} - Q_r^{\pi_k}\|_{\infty} \leq e$ for all $k \geq 0$, then

$$\mathbb{E}\left[f_{\rho}(\pi_k) - f_{\rho}(\pi^*)\right] \le \left(1 - \frac{1 - \gamma}{M}\right)^k \cdot \underbrace{\mathcal{O}(1)}_{} + \frac{4Me}{(1 - \gamma)^2}$$

from initialization

Input: Evaluate $\widehat{Q}_r^{\pi_k,\xi_k} \approx Q_r^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_A} \eta_k \langle Q_r^{\pi_k, \xi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Theorem

With the same stepsize as RPMD, if $\mathbb{E}_{\xi_k} \|Q_r^{\pi_k, \xi_k} - Q_r^{\pi_k}\|_{\infty} \leq e$ for all $k \geq 0$, then

$$\mathbb{E}\left[f_{\rho}(\pi_{k}) - f_{\rho}(\pi^{*})\right] \leq \left(1 - \frac{1 - \gamma}{M}\right)^{k} \cdot \underbrace{\mathcal{O}(1)}_{\text{from initialization}} + \frac{4Me}{(1 - \gamma)^{2}}$$

Input: Evaluate $\widehat{Q}_r^{\pi_k,\xi_k} \approx Q_r^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_A} \eta_k \langle Q_r^{\pi_k, \xi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Theorem

With the same stepsize as RPMD, if $\mathbb{E}_{\xi_k} \|Q_r^{\pi_k, \xi_k} - Q_r^{\pi_k}\|_{\infty} \leq e$ for all $k \geq 0$, then

$$\mathbb{E}\left[f_{\rho}(\pi_{k}) - f_{\rho}(\pi^{*})\right] \leq \left(1 - \frac{1 - \gamma}{M}\right)^{k} \cdot \underbrace{\mathcal{O}(1)}_{\text{from initialization}} + \frac{4Me}{(1 - \gamma)^{2}}$$

- Converges up to the noise level
- \triangleright Need to interact with \mathbb{P}_{N} to learn robust Q-function

Exploiting Access to \mathbb{P}_{N}

Algorithm Robust Temporal Difference Learning: $\pi \to Q_r^{\pi,\xi}$

for t = 0, 1, ... do

Collect $s_{t+1} \sim \mathbb{P}_{N}(\cdot|s_{t}, a_{t})$, and make action $a_{t+1} \sim \pi(\cdot|s_{t+1})$

Update:

$$\begin{aligned} \theta_{t+1} &= \theta_t + \alpha_t \big[c(s_t, a_t) + \gamma \theta_t(s_{t+1}, a_{t+1}) \\ &+ \sigma_{\mathcal{U}_{s_t, a_t}}(M(\pi, \theta_t)) - \theta_t(s_t, a_t) \big] e(s_t, a_t) \end{aligned}$$

end for

- $\sigma_X(\cdot)$ is the support function of X
- $[M(\pi,x)](s) = \sum_{a \in A} \pi(a|s)x(s,a)$ for $s \in \mathcal{S}$

Learning the Robust Q-function

Exploiting Access to \mathbb{P}_N

Algorithm Robust Temporal Difference Learning: $\pi \to Q_r^{\pi,\xi}$

for
$$t=0,1,\ldots$$
 do Collect $s_{t+1}\sim \mathbb{P}_{\mathrm{N}}(\cdot|s_t,a_t)$, and make action $a_{t+1}\sim \pi(\cdot|s_{t+1})$ Update:

$$\theta_{t+1} = \theta_t + \alpha_t [c(s_t, a_t) + \gamma \theta_t(s_{t+1}, a_{t+1}) + \sigma_{\mathcal{U}_{s_t, a_t}}(M(\pi, \theta_t)) - \theta_t(s_t, a_t)] e(s_t, a_t)$$

end for

- $\sigma_X(\cdot)$ is the support function of X
- $[M(\pi, x)](s) = \sum_{a \in A} \pi(a|s)x(s, a)$ for $s \in \mathcal{S}$
- When $\mathcal{U} = \{0\}$, reduces to standard TD

Exploiting Access to \mathbb{P}_{N}

Algorithm Robust Temporal Difference Learning: $\pi \to Q_r^{\pi,\xi}$

for t = 0, 1, ... do

Collect $s_{t+1} \sim \mathbb{P}_{N}(\cdot|s_{t}, a_{t})$, and make action $a_{t+1} \sim \pi(\cdot|s_{t+1})$

Update:

$$\begin{aligned} \theta_{t+1} &= \theta_t + \alpha_t \big[c(s_t, a_t) + \gamma \theta_t(s_{t+1}, a_{t+1}) \\ &+ \sigma_{\mathcal{U}_{s_t, a_t}}(M(\pi, \theta_t)) - \theta_t(s_t, a_t) \big] e(s_t, a_t) \end{aligned}$$

end for

- $\sigma_X(\cdot)$ is the support function of X
- $[M(\pi,x)](s) = \sum_{a \in A} \pi(a|s)x(s,a)$ for $s \in \mathcal{S}$
- When $\mathcal{U} = \{0\}$, reduces to standard TD
- Can be easily adapted for ϵ -contamination model
 - Unbiased robust Bellman evaluation operator is available

Sample Complexity of RTD and SRPMD

Sample complexity of Robust TD

Proposition

For any $\epsilon > 0$, with properly chosen α , the RTD method needs at most

$$T = \widetilde{\mathcal{O}}\left(\frac{\log^2(1/\epsilon)}{(1-\gamma)^5\nu_{\min}^3\epsilon^2}\right)$$

iterations to find an estimate θ_T satisfying $\mathbb{E}_{\varepsilon} \|\theta_T - Q_r^{\pi}\|_{\infty} < \epsilon$.

Sample Complexity of RTD and SRPMD

Sample complexity of Robust TD

Proposition

For any $\epsilon > 0$, with properly chosen α , the RTD method needs at most

$$T = \widetilde{\mathcal{O}}\left(\frac{\log^2(1/\epsilon)}{(1-\gamma)^5\nu_{\min}^3\epsilon^2}\right)$$

iterations to find an estimate θ_T satisfying $\mathbb{E}_{\varepsilon} \|\theta_T - Q_r^{\pi}\|_{\infty} < \epsilon$.

▶ Sample complexity of SRPMD

Theorem

With the same stepsize chosen as before, total number of samples required by SRPMD for finding an ϵ -optimal policy can be bounded by

$$\widetilde{\mathcal{O}}\left(\frac{M^3\log^2(4M/(\epsilon(1-\gamma)^2))}{(1-\gamma)^{10}\nu_{\min}^3\epsilon^2}\right).$$

• We believe the dependence on $(1-\gamma)^{-1}$ can be improved

Robust Policy Mirror Descent: (Linear) Function Approximation

Preview of Linear Approximation

 \triangleright The essential target: Find θ^{π} so that

$$\|\underbrace{\phi(\cdot,\cdot)^{\top}\theta^{\pi}}_{Q_{\theta^{\pi}}^{\pi}} - Q_{r}^{\pi}(\cdot,\cdot)\|_{\infty}$$

can be controlled.

Isn't linear function approximation easy?

Planning with Function Approximation

0000

Preview of Linear Approximation

 \triangleright The essential target: Find θ^{π} so that

$$\|\underbrace{\phi(\cdot,\cdot)^{\top}\theta^{\pi}}_{Q^{\pi}_{\theta^{\pi}}} - Q^{\pi}_{r}(\cdot,\cdot)\|_{\infty}$$

can be controlled.

Isn't linear function approximation easy?

Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}^{\pi} Q_{\theta}^{\pi} \rightarrow \theta^{\pi}$$

- \mathcal{T}^{π} Robust Bellman operator of Q_r^{π}
- $\Pi_{\phi,\nu}$ the projection onto $\mathrm{span}(\Psi)$ in $\|\cdot\|_{\nu}$
- $\Pi_{\phi,\nu} \mathcal{T}^{\pi}$ a contraction
- Roots of TD and many variants

Preview of Linear Approximation

 \triangleright The essential target: Find θ^{π} so that

$$\|\underbrace{\phi(\cdot,\cdot)^{\top}\theta^{\pi}}_{Q_{\theta^{\pi}}^{\pi}} - Q_r^{\pi}(\cdot,\cdot)\|_{\infty}$$

can be controlled.

Isn't linear function approximation easy?

Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}^{\pi} Q_{\theta}^{\pi} \rightarrow \theta^{\pi}$$

- \mathcal{T}^{π} Robust Bellman operator of Q_r^{π}
- $\Pi_{\phi,\nu}$ the projection onto $\operatorname{span}(\Psi)$ in $\|\cdot\|_{\nu}$
- $\Pi_{\phi} \mathcal{T}^{\pi}$ a contraction
- Roots of TD and many variants
- Minimize Bellman residual:

$$\min_{\theta} \|Q_{\theta}^{\pi}(\cdot, \cdot) - \mathcal{T}^{\pi} Q_{\theta}^{\pi}(\cdot, \cdot)\|_{2}^{2} \rightarrow \theta^{\pi}$$

Easily combined and nonlinear approximations (e.g., NNs)

Why is linear function approximation difficult (for robust evaluation)?

Why is linear function approximation difficult (for robust evaluation)?

Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi} \not \prec \theta^{\pi}$$

- $\mathcal{T}^\pi_{\mathrm{robust}}$ Bellman operator of Q^π $\Pi_{\phi, \nu} \mathcal{T}^\pi_{\mathrm{robust}}$ NOT a contraction
- Does not even have a solution
- Robust TD diverges with linear approximation

Why is linear function approximation difficult (for robust evaluation)?

Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi} \not\to \theta^{\pi}$$

- $\mathcal{T}^\pi_{\mathrm{robust}}$ Bellman operator of Q^π $\Pi_{\phi, \nu} \mathcal{T}^\pi_{\mathrm{robust}}$ NOT a contraction
- Does not even have a solution
- Robust TD diverges with linear approximation
- Minimize Bellman residual:

$$\min_{\theta} \|Q_{\theta}^{\pi}(\cdot, \cdot) - \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi}(\cdot, \cdot)\|_{2}^{2} \not \prec \theta^{\pi}$$

• Non-convex in θ

Why is linear function approximation difficult (for robust evaluation)?

Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi} \not \to \theta^{\pi}$$

- $\mathcal{T}^\pi_{\mathrm{robust}}$ Bellman operator of Q^π $\Pi_{\phi, \nu} \mathcal{T}^\pi_{\mathrm{robust}}$ NOT a contraction
- Does not even have a solution
- Robust TD diverges with linear approximation
- Minimize Bellman residual:

$$\min_{\theta} \|Q_{\theta}^{\pi}(\cdot, \cdot) - \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi}(\cdot, \cdot)\|_{2}^{2} \not \to \theta^{\pi}$$

• Non-convex in θ

Current Development

No assumption-free convergent method for robust policy evaluation even in the deterministic setting

Robust Evaluation as Policy Optimization

▶ MDP of Nature:

- State space: $S \times A$
- Action space: $\mathcal{U}_{s,a}$ for each (s,a)
- Transition: transition of $\{(s_t, a_t)\}$ generated by π deployed in \mathbb{P}_u^{π} , where uis determined by nature's policy
- Cost: -c(s, a)

Robust Evaluation as Policy Optimization

▶ MDP of Nature:

- State space: $\mathcal{S} \times \mathcal{A}$
- Action space: $\mathcal{U}_{s,a}$ for each (s,a)
- Transition: transition of $\{(s_t, a_t)\}$ generated by π deployed in \mathbb{P}_u^{π} , where uis determined by nature's policy
- Cost: -c(s, a)
- \triangleright **Observation:** optimal value function of nature equals to $-Q_r^{\pi}(s,a)$

Question: can we optimize nature's MDP efficiently?

▶ MDP of Nature:

- State space: $\mathcal{S} \times \mathcal{A}$
- Action space: $\mathcal{U}_{s,a}$ for each (s,a)
- Transition: transition of $\{(s_t, a_t)\}$ generated by π deployed in \mathbb{P}^π_u , where u is determined by nature's policy
- Cost: -c(s, a)
- ho Observation: optimal value function of nature equals to $-Q^\pi_r(s,a)$

Question: can we optimize nature's MDP efficiently?

Yes, $\mathcal{O}(1/\epsilon^2)$ sample suffices, even with linear approximation.

Also can be incorporated with NNs.

- **1** RPMD for robust MDP with (s, a)-rectangular ambiguity
 - Simple implementation
 - Subsumes planning of non-robust MDP
- ② Deterministic setting: $\mathcal{O}(\log(1/\epsilon))$ iterations
- Stochastic setting:
 - Convergence up to noise level
 - $\widetilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity
- 4 Evaluation with linear approximation:
 - $\mathcal{O}(1/\epsilon^2)$ sample complexity

- **1** RPMD for robust MDP with (s, a)-rectangular ambiguity
 - Simple implementation
 - Subsumes planning of non-robust MDP
- 2 Deterministic setting: $\mathcal{O}(\log(1/\epsilon))$ iterations
- Stochastic setting:
 - Convergence up to noise level
 - $\widetilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity
- 4 Evaluation with linear approximation:
 - $\mathcal{O}(1/\epsilon^2)$ sample complexity
- O Potential directions:
 - Sample limit of policy gradients for robust MDP
 - dependence on the effective horizon (lower/upper bounds)
 - s- and r-rectangular ambiguity sets

Summary

- **1** RPMD for robust MDP with (s, a)-rectangular ambiguity
 - Simple implementation
 - Subsumes planning of non-robust MDP
- **2** Deterministic setting: $\mathcal{O}(\log(1/\epsilon))$ iterations
- Stochastic setting:
 - Convergence up to noise level
 - ullet $\widetilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity
- Evaluation with linear approximation:
 - $\mathcal{O}(1/\epsilon^2)$ sample complexity
- Opential directions:
 - Sample limit of policy gradients for robust MDP
 - dependence on the effective horizon (lower/upper bounds)
 - s- and r-rectangular ambiguity sets

Reference

- Li, Y., Lan, G, & Zhao, T. (2022). First-order policy optimization for robust Markov decision process. arXiv preprint arXiv:2209.10579.
- Li, Y., & Lan, G. (2023). First-order policy optimization for robust policy evaluation. arXiv preprint arXiv:2307.15890.