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Background



Successes of Deep Learning (DL)

Face recognition
– bio-authentification
– security

Natural language processing
– machine translation
– machine understanding
– text generation

Planning
– autonomous driving



Blindspots of DL: adversarial examples

Deep neural networks are
vulnerable to adversarial
examples (Goodfellow et
al. 2014).

+ =

Clean Example Adversarial Example

Imperceptible
Perturbation

Well-trained
Neural Network

“Dog” “Hot dog”

Mathematical description: Given model f(·, θ), loss function
`(·, ·), data point (x, y), a (specified) perturbation set B.

x̂ = arg max
x′∈{x}+B

`
(
f(x′, θ), y

)
.
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Defend against adversarial examples

Provable defense:

discrete optimization: (Tjeng et al. 2017).
– heavy computation, no scalable

randomized smoothing: (Cohen et al. 2019).
– scalable to ImageNet level dataset.
– hard to defend against `∞ attack: B = {δ : ‖δ‖∞ ≤ ε}.

Summary: limited practical performance, assumes adversary has
infinite computational power (reasonable?).
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Adversarial Training (AT), (Madry et al 2017)

min
θ
L̂adv(θ) =

1

n

n∑
i=1

max
δi∈B

`(f( xi + δi︸ ︷︷ ︸
Adversarial Example:x̂i

; θ), yi).

Great empirical performance. Building block for most defense
methods. Matches state-of-art algorithm with early-stopping
(Rice et al. 2020)

Adaptive robustness: defending against stronger attack →
more robust model (Gao et al. 2019).
– gradient descent based adversary (GDAT).

Lack of theoretical guarantees.
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Outline

Address the following questions, (tentatively)

Q: How does AT achieve robustness?

A: Understand AT through its algorithmic implicit bias.

Q: AT beyond robustness?

A: Improve reinforcement learning (RL) algorithm with AT.
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Part I: Understand Adversarial Training



Robust generalization

Population robustness:

min
θ
Ladv(θ) = E(x,y)∼Dmax

δ∈B
`(f( x+ δ︸ ︷︷ ︸
Adversarial Example: x̂

; θ), y).

Empirical robustness: AT replaces unknown data distribution D
with empirical distribution D̂ = {(xi, yi)}ni=1.

min
θ
L̂adv(θ) = E

(x,y)∼D̂max
δ∈B

`(f( x+ δ︸ ︷︷ ︸
Adversarial Example: x̂

; θ), y).

Robust generalization:
∥∥∥L̂adv(·)− Ladv(·)

∥∥∥
∞
≤ ε.

Small L̂adv ⇒ Small Ladv.

Yan Li — Adversarial Training: theories and applications 7/35



Robust generalization

Population robustness:

min
θ
Ladv(θ) = E(x,y)∼Dmax

δ∈B
`(f( x+ δ︸ ︷︷ ︸
Adversarial Example: x̂

; θ), y).

Empirical robustness: AT replaces unknown data distribution D
with empirical distribution D̂ = {(xi, yi)}ni=1.

min
θ
L̂adv(θ) = E

(x,y)∼D̂max
δ∈B

`(f( x+ δ︸ ︷︷ ︸
Adversarial Example: x̂

; θ), y).

Robust generalization:
∥∥∥L̂adv(·)− Ladv(·)

∥∥∥
∞
≤ ε.

Small L̂adv ⇒ Small Ladv.

Yan Li — Adversarial Training: theories and applications 7/35



Road to robust generalization

Known Results:

Complexity-based approach: robust shattering dimension
(Montasser et al. 2019), adversarial Rademacher complexity
(Ying et al. 2018), function transformation (Khim et al.
2018).

Solely depends on complexity of the model class. Not
applicable to DNNs (# Params � 108) .

How about a margin based approach?

Parameter-free (e.g., kernel SVM).

Our approach: algorithmic implicit bias.

Result in short: AT finds large margin solution.
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Implicit Bias
Definition: In solving an under-specified problem, the optimization
algorithm biases toward solutions with certain properties.

Implicit bias in training DNNs:
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Implicit Bias

Provable examples:

shallow models:

• over-determined linear system + GD → minimum `2 norm
solution (well-known).

• logistic regression (linearly separable data) + GD → `2
SVM in direction (Soudry et al. 2018).

• extension to SGD and Mirror Descent (Gunasekar et al.
2018).

deep models:

• Linear model + gradient flow → weight-matrix alignment +
low-rankness (Ji et al. 2018).

• Linear convolutional network (Gunasekar et al. 2018).
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Training linear model with GD

Problem setup: linearly separable data (xi, yi)
n
i=1, tight

exponential tail loss (e.g., logistic/exp loss),

Learning linear classifier:

min
θ
L̂clean(θ) =

1

n

n∑
i=1

`(yix
>
i θ).

Observations:

no finite minimizer!
∥∥θt∥∥→∞ if L̂clean(θt)→ 0.

only the direction matter.
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Training linear model with GD

Theorem (Soudry et al. 2018)

GD converges in direction to the `2 SVM, that is∥∥θt∥∥
2

= Ω(log t), 1−
〈
θt/
∥∥θt∥∥

2
, θ2
〉

= O(1/ log t).

θ2 (and generally θq) = the optimal `2(`q) margin SVM,

θq = arg max
‖θ‖p=1

min
i=1,...,n

yix
>
i θ, 1/p+ 1/q = 1, p, q ∈ [1,∞].

γq = optimal `q margin (max of RHS).

Slow rate (exp(1/ε) time for ε accuracy in direction), tight
(unfortunately).
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Training linear model with AT

Problem setup: linearly separable data (xi, yi)
n
i=1, tight

exponential tail loss (e.g., logistic/exp loss), `q perturbation:
B = {δ : ‖δ‖q ≤ c}.
Learning robust linear classifier:

min
θ
L̂adv(θ) =

1

n

n∑
i=1

max
‖δ‖q≤c

`(yi(xi + δ)>θ).

Observations:

When ε = 0, standard training, converges in direction to `2
SVM (Soudry et al. 2018).

Inner max can be solved exactly.

When c < γq, no finite solution, ‖θt‖ → ∞!
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GDAT – Gradient Descent based Adversarial
Training

GDAT on Separable Data with `q Perturbation
Input: Data points {(xi, yi)}ni=1, perturbation level

c < γq and step sizes {ηt}T−1t=0 .
Init: Set θ0 = 0.
For t = 0 . . . T − 1:

For i = 1 . . . n, δ̂i = arg max‖δi‖q≤c `(yi(xi + δi)
>θt).

Set x̃i = xi + δ̂i, for i = 1 . . . n.
Update θt+1 = θt − (ηt/n) ·∑n

i=1∇`(yix̃iθt).

Questions: Does GDAT possess implicit bias, and whether it
relates to robustness?
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A Robust SVM

Consider the following large margin classifier that adapts to
adversary geometry B = {δ : ‖δ‖q ≤ c}

θq,c = arg max
‖θ‖2=1

min
i=1,...,n

min
‖δi‖q≤c

yi(xi + δi)
>θ.

Robustness: θq,c is in the same direction to the solution of

min
θ∈Rd
‖θ‖2 s.t. yix̃

>
i θ ≥ 1 for all ‖x̃i − xi‖q ≤ c,∀i = 1 . . . n.
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A Robust SVM

✓t/k✓tk2

✓1,c

✓2

Minimum mix-norm solution: θq,c is in the same direction to the
solution of (here 1/p+ 1/q = 1)

min
θ∈Rd
‖θ‖2 + η(c) ‖θ‖p s.t. yix

>
i θ ≥ 1,∀i = 1 . . . n.
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GDAT Adapts to Adversary Examples

Theorem (Li et al. 2019)

Let perturbation level c < γq, Then

1−
〈
θt/
∥∥θt∥∥

2
, θq,c

〉
= O(log n/ log t).

Remarks:

Guaranteed robustness against `q perturbation bounded by c.

Adaptive implicit bias. Converges to the most `2 robust linear
classifier with `q margin at least c.
Special case: q = 2, converge to `2 SVM.

Complementary of well known results on non-separable data:
SVM + AT ⇒ Robust SVM (Xu el al. 2009).
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GDAT Accelerates Convergence (q = 2)

Theorem (Li et al. 2019)

Let c and number of iterations T satisfy γ2 − c = O
(
log2 T
T

)1/2
,

We have θ2,c = θ2, and

1−
〈
θT /

∥∥θT∥∥
2
, θ2
〉

= O
(

log T√
T

)
.

Exponential Acceleration by GDAT!

Corollary: Convergence on clean loss by GDAT is almost
exponentially faster than GD.

GDAT: L̂clean(θT ) = O
(

exp(−
√
T/ log T )

)
GD: L̂clean(θT ) = O (1/T )
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Intuition: We have θ2,c = θ2: implicit bias of GD coincides with
explicit bias of AT!

Key Technical Ingredients:

Projection of θt onto the orthogonal space
M⊥ = {θ : 〈θ, θ2〉 = 0} is bounded for all t ≥ 0.

For projection of θt onto the space M = span(θ2), its
increment satisfies Generalized Perceptron Lemma:〈

θt+1 − θt, θ2
〉
≥ ηL̂adv(θt)(γ2 − c).

GDAT
M = span(✓2)
M?
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Empirical Study
Linear Classifiers: We generate data with γ2 = 1. We set
c = 0.95. η = 0.1 for GDAT and η = 1 for standard training.
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Empirical Study
Neural Networks: We use MNIST dataset. The width of hidden
layer varies in {64× 64, 128× 128, 256× 256, 512× 512}. We use
`∞ perturbation with perturbation level ε ∈ {0.1, 0.15, 0.20}.
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Additional experimental results: (Xie et al. 2019) show
acceleration effect of AT with practical deep networks.

Summary

GDAT adapts the classifier to adversary geometry.

GDAT with `2 perturbation provides exponential speed-up on
clean loss.
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Part II: AT for better Reinforcement Learning



Reinforcement Learning

Markov Decision Process: M = (S,A, P,R, γ)

Action a 2 A
<latexit sha1_base64="qZue5Y4KWz0CdkhvMPl0GxYsW/U=">AAACCHicbVBNS8NAEN3Ur1q/oh49GCyCp5JUQY+tXjxWsB/QhLLZbtqlm03YnYgl1JsX/4oXD4p49Sd489+4aXPQ1gcDj/dmmJnnx5wpsO1vo7C0vLK6VlwvbWxube+Yu3stFSWS0CaJeCQ7PlaUM0GbwIDTTiwpDn1O2/7oKvPbd1QqFolbGMfUC/FAsIARDFrqmYcu0HtQQVonmTB5wC4TbohhSDBP65OeWbYr9hTWInFyUkY5Gj3zy+1HJAmpAMKxUl3HjsFLsQRGOJ2U3ETRGJMRHtCupgKHVHnp9JGJdayVvhVEUpcAa6r+nkhxqNQ49HVndqKa9zLxP6+bQHDhpUzECVBBZouChFsQWVkqVp9JSoCPNcFEMn2rRYZYYgI6u5IOwZl/eZG0qhXntFK9OSvXLvM4iugAHaET5KBzVEPXqIGaiKBH9Ixe0ZvxZLwY78bHrLVg5DP76A+Mzx8xYpq2</latexit>

State s0 2 S
<latexit sha1_base64="1pPRLBMKShxbQ1y5+O8OetD3Wkg=">AAACCHicbVA9SwNBEN3zM8avqKWFh0G0CndR0DJoYxmJ+YBcCHubuWTJ3t6xOyeGI3Y2/hUbC0Vs/Ql2/hs3H4UmPhh4vDfDzDw/Flyj43xbC4tLyyurmbXs+sbm1nZuZ7emo0QxqLJIRKrhUw2CS6giRwGNWAENfQF1v3818ut3oDSP5C0OYmiFtCt5wBlFI7VzBx7CPeogrSBFGD7oY49LL6TYY1SklWE7l3cKzhj2PHGnJE+mKLdzX14nYkkIEpmgWjddJ8ZWShVyJmCY9RINMWV92oWmoZKGoFvp+JGhfWSUjh1EypREe6z+nkhpqPUg9E3n6EQ9643E/7xmgsFFK+UyThAkmywKEmFjZI9SsTtcAUMxMIQyxc2tNutRRRma7LImBHf25XlSKxbc00Lx5ixfupzGkSH75JCcEJeckxK5JmVSJYw8kmfySt6sJ+vFerc+Jq0L1nRmj/yB9fkDFPyapA==</latexit>

Reward R(s, a)
<latexit sha1_base64="1R7pf4n8ZI5a9l5bOgDPYvEylXY=">AAAB/3icbVDJSgNBEO2JW4zbqODFy2AQIkiYiYIeg148xmAWSELo6dQkTXoWumvUMEbwV7x4UMSrv+HNv7GzHDTxQcHjvSqq6rmR4Apt+9tILSwuLa+kVzNr6xubW+b2TlWFsWRQYaEIZd2lCgQPoIIcBdQjCdR3BdTc/uXIr92CVDwMbnAQQcun3YB7nFHUUtvcayLco/KSMtxR2Rk+lnPqmB61zaydt8ew5okzJVkyRaltfjU7IYt9CJAJqlTDsSNsJVQiZwKGmWasIKKsT7vQ0DSgPqhWMr5/aB1qpWN5odQVoDVWf08k1Fdq4Lu606fYU7PeSPzPa8TonbcSHkQxQsAmi7xYWBhaozCsDpfAUAw0oUxyfavFelRShjqyjA7BmX15nlQLeeckX7g+zRYvpnGkyT45IDnikDNSJFekRCqEkQfyTF7Jm/FkvBjvxsekNWVMZ3bJHxifP+kalgM=</latexit>

P (s′|s, a): Transition Kernel;

γ ∈ (0, 1): Discount Factor;

E
∑∞

t=0 γ
tR(st, at): Expected Total Discounted Reward.
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Solving an RL.

Goal: maximize expected (discounted) reward

max
π

V (π) = Es0,a0,...

∑
t≥0

γtr(st, at)

 ,
with s0 ∼ p0, at ∼ π(st), st+1 ∼ P(st+1|st, at).

Policy gradient algorithms:

estimate the gradient of the expected reward through
trajectory samples: ĝt, update: πt+1 = πt − ηĝt.
suffers from large variance, aggressive update, unstable
training.

Improved variants [Actor-critic]: TRPO (Schulman et al. 2015),
DDPG (Lillicrap et al. 2015).
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RL with smooth environments

Motivation: smooth reward function, smooth transition ⇒ exists
smooth policy.

Promoting smoothness in policy: adversarially defined
regularization (Shen∗, Li∗, Jiang, Wang, Zhao, 2020)

Rπs (θ) = E
s∼ρπθ

max
s̃∈Bd(s,ε)

D(πθ(s), πθ(s̃)).

D(·, ·) appropriate metric, Bd(s, ε) = {s′, ‖s− s′‖∞ ≤ ε}, ρπθ the
stationary state distribution induced by πθ.

the inner max measures local Lipschitz smoothness of policy
under metric D.

can solve the inner max with projected gradient ascent.

take expectation w.r.t. state-visitation distribution:
smoothness along trajectory.
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take expectation w.r.t. state-visitation distribution:
smoothness along trajectory.
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RL with smooth environments

Motivation: smooth reward function, smooth transition ⇒ exists
smooth policy.
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Application: TRPO (stochastic policy)

Policy update:

θk+1 = arg min
θ
−E

s∼ρ
πθk ,

a∼πθk

[
πθ(a|s)
πθk(a|s)A

πθk (s, a)

]
+ λsEs∼ρπθk max

s̃∈Bd(s,ε)
DJ(πθ(·|s) || πθ(·|s̃)),

s.t. Es∼ρπθk
[
DKL(πθk(·|s)‖πθ(·|s)

]
≤ δ.

Jeffrey’s divergence:
DJ(P ||Q) = 1

2DKL(P ||Q) + 1
2DKL(Q||P ).

first part – approximate linearization of objective function
(proximal update).

second part – smoothness regularization.
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Application: DDPG (deterministic policy)

Actor-critic framework:

actor: policy network µθ(s).

critic: network to approximate Q-function Qφ(s, a) (expected
future reward given initial state-action pair (s, a)).

Idea: use critic to help update the policy (actor).

DDPG with smoothness inducing regularization. We can
induce smoothness in either the actor or the critic.
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Application: DDPG (deterministic policy)

Smooth critic:

φt+1 = arg min
φ

∑
i∈B

(
yit −Qφ(sit, a

i
t)
)2

+ λs
∑
i∈B

max
s̃it∼Bd(sit,ε)

(Qφ(sit, a
i
t)−Qφ(s̃it, a

i
t))

2,

with yit = rit + γQφ′t(s
i
t+1, µθ′t(s

i
t+1)),∀i ∈ B,

B denotes the mini-batch sampled from the replay buffer.

first part – approximate Bellman error for Q-function
evaluation.

second part – smoothness inducing regularization.

use target network φ′t to generate yit, improve stability.

update the target network with exponential averaging:
φ′t+1 = τφt+1 + (1− τ)φ′t.
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Application: DDPG (deterministic policy)

Smooth actor:

µθt+1 = µθt − η E
s∼ρβ

[
−∇aQφ(s, a)

∣∣
a=µθt (s)

∇θµθt(s)

+λs∇θ ‖µθt(s)− µθt(s̃)‖22
]
,

with s̃ = arg max
s̃∼Bd(s,ε)

‖µθt(s)− µθt(s̃)‖22 for s ∼ ρβ.

first part – policy gradient.

second part – gradient of the smoothness inducing regularizer.
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Experiments

Environments: OpenAI gym (Swimmer, HalfCheetah, Walker,
Ant, Hopper)

Faster learning:

Iterations Iterations

IterationsIterations
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R
ew

ar
d

HalfCheetah-v2

Walker2d-v2 Ant-v2

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

DDPG-SR-CDDPG-SR-ADDPG
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Iterations Iterations

IterationsIterations

Faster learning compared to strong implementation of baseline.
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Significant improvement: Repeated 10 runs with random
initializations, plot the quantiles of the final cumulative rewards.
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Improvement for both worse-case and base-case scenario.
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Evaluation of robustness
Swimmer - Adversarially Disturbed Rollout

log ✏ log ✏
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Robust against adversarial error & measurement error.

Yan Li — Adversarial Training: theories and applications 32/35



Summary

Study implicit bias of AT when training linear model.

– AT adapts the model to adversary geometry.

– AT with `2 perturbation speeds up training.

Improve reinforcement learning algorithm with AT.

– adversarially defined smoothness regularizer.

– improve sample complexity and robustness against state
perturbations.

Yan Li — Adversarial Training: theories and applications 33/35



References

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. ”Explaining
and harnessing adversarial examples.”
[2] Madry, Aleksander, et al. ”Towards deep learning models resistant to
adversarial attacks.”
[3] Rice, Leslie, Eric Wong, and J. Zico Kolter. ”Overfitting in adversarially
robust deep learning.”
[4] Gao, Ruiqi, et al. ”Convergence of Adversarial Training in Overparametrized
Neural Networks.”
[5] Tjeng, Vincent, Kai Xiao, and Russ Tedrake. ”Evaluating robustness of
neural networks with mixed integer programming.”
[6] Cohen, Jeremy M., Elan Rosenfeld, and J. Zico Kolter. ”Certified
adversarial robustness via randomized smoothing.”
[7] Montasser, Omar, Steve Hanneke, and Nathan Srebro. ”VC classes are
adversarially robustly learnable, but only improperly.”
[8] Yin, Dong, Kannan Ramchandran, and Peter Bartlett. ”Rademacher
complexity for adversarially robust generalization.”
[9] Khim, Justin, and Po-Ling Loh. ”Adversarial risk bounds via function
transformation.”

Yan Li — Adversarial Training: theories and applications 34/35



References

[10] Soudry, Daniel, et al. ”The implicit bias of gradient descent on separable
data.”
[11] Gunasekar, Suriya, et al. ”Characterizing implicit bias in terms of
optimization geometry.”
[12] Ji, Ziwei, and Matus Telgarsky. ”Gradient descent aligns the layers of deep
linear networks.”
[13] Gunasekar, Suriya, et al. ”Implicit bias of gradient descent on linear
convolutional networks.”
[14] Xu, Huan, Constantine Caramanis, and Shie Mannor. ”Robustness and
regularization of support vector machines.”
[15] Xie, Cihang, et al. ”Adversarial Examples Improve Image Recognition.”
[16] Schulman, John, et al. ”Trust region policy optimization.”

[17] Lillicrap, Timothy P., et al. ”Continuous control with deep reinforcement

learning.”

Yan Li — Adversarial Training: theories and applications 35/35



Thank You!


