Policy Mirror Descent Inherently Explores Action Space

Yan Li

Georgia Institute of Technology

INFORMS Optimization Society Conference, 2024

Joint work with George Lan

Markov Decision Process & Policy Optimization

▷ Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

> Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- cost function c
- transition kernel P

Decision making:

- **①** Observe current state S_t and feed into policy
- ② Make A_t following distribution $\pi(\cdot|S_t)$

▷ Sequential decision making over multiple timesteps ..

Key elements

- $\bullet \ \, \mathsf{policy} \,\, \pi$
- ullet finite state space: ${\cal S}$
- finite action space: A
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

Observing loss: $C_t = c(S_t, A_t) \in [0, 1]$

> Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- ullet cost function c
- transition kernel P

State transition: S_{t+1} follows distribution $\mathbb{P}(\cdot|S_t,A_t)$

Repeat decision process ..

> Sequential decision making over multiple timesteps ..

Key elements

- ullet policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

Trajectory:

$$\{(S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_t, A_t, C_t), \dots\}$$

▷ Sequential decision making over multiple timesteps ..

Key elements

- ullet policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- ullet cost function c
- transition kernel P

Performance (value function):

$$V_{\mathbb{P}}^{\pi}(s) = \mathbb{E}_{\mathbb{P}}^{\pi} \big[\sum_{t=0}^{\infty} \underbrace{\gamma^t C_t}_{ ext{discounting future}} |S_0 = s \big]$$

▷ Sequential decision making over multiple timesteps ...

Key elements

- ullet policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- ullet cost function c
- transition kernel P

Planning: find the optimal policy of

$$\min_{\pi} V_{\mathbb{P}}^{\pi}(s), \ \forall s \in \mathcal{S}$$

• Covers bandit as special case (|S| = 1, $\gamma = 0$)

▷ Sequential decision making over multiple timesteps ...

Key elements

- ullet policy π
- ullet finite state space: ${\cal S}$
- ullet finite action space: ${\cal A}$
- ullet cost function c
- transition kernel ℙ

Planning with an equivalent objective:

$$\min_{\pi} f_{\rho}(\pi) = \sum_{s \in \mathcal{S}} \rho(s) V_{\mathbb{P}}^{\pi}(s) \quad \Rightarrow \quad \text{Non-convex}$$

• Covers bandit as special case (|S| = 1, $\gamma = 0$)

Policy Gradients - Overview

Policy Gradients - A Basic Skeleton

▷ First-order policy optimization:

- 2 Construct gradient information G_k
- \bullet Update $(\pi_k, G_k) \to \pi_{k+1}$
- 4 Repeat ...

Policy Gradients - A Basic Skeleton

Q-function:

$$Q_{\mathbb{P}}^{\pi}(s,a) = \mathbb{E}_{\mathbb{P}}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

Policy Gradients - A Basic Skeleton

- * Challenges:
 - Non-convex landscape
 - Model (\mathbb{P} and c) can be unknown

Policy Gradients - Existing Development

- **①** Stochastic setting unknown $\mathbb{P}\ \&\ c$
 - ullet Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/\epsilon^4)$ samples
 - Shani, Efroni, Mannor '20: $\mathcal{O}(1/\epsilon^4)$ and $\mathcal{O}(1/\epsilon^3)$
 - ullet Lan, '21: $\mathcal{O}(1/\epsilon^2)$ samples for entropy regularized MDPs

Policy Gradients – Existing Development

- **1** Stochastic setting unknown $\mathbb{P} \& c$
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/\epsilon^4)$ samples

 - Shani, Efroni, Mannor '20: $\mathcal{O}(1/\epsilon^4)$ and $\mathcal{O}(1/\epsilon^3)$ Lan, '21: $\mathcal{O}(1/\epsilon^2)$ samples for entropy regularized MDPs

Current status of policy gradients

An ϵ -optimal policy can be attained using $\mathcal{O}(1/\epsilon^2)$ samples, IF ...

"IF ..."

Tension Between Evaluation and Optimization

▶ Q-function:

$$Q_{\mathbb{P}}^{\pi}(s,a) = \mathbb{E}_{\mathbb{P}}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

 \triangleright Classical-Eval (π_k) with unknown \mathbb{P} :

▶ Q-function:

$$Q_{\mathbb{P}}^{\pi}(s, a) = \mathbb{E}_{\mathbb{P}}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

 \triangleright Classical-Eval (π_k) with unknown \mathbb{P} :

1 Deploy π_k , generate trajectory:

$$\xi = \{ (S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_t, A_t, C_t), \dots \}$$
where $A_t \sim \pi_k(\cdot | S_t), S_{t+1} \sim \mathbb{P}(\cdot | S_t, A_t)$

ullet We assume $\{S_t\}$ is ergodic (by no means trivial)

▶ Q-function:

$$Q_{\mathbb{P}}^{\pi}(s,a) = \mathbb{E}_{\mathbb{P}}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

 \triangleright Classical-Eval (π_k) with unknown \mathbb{P} :

1 Deploy π_k , generate trajectory:

$$\xi = \{ (S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_t, A_t, C_t), \dots \}$$
where $A_t \sim \pi_k(\cdot | S_t), \ S_{t+1} \sim \mathbb{P}(\cdot | S_t, A_t)$

- \bullet We assume $\{S_t\}$ is ergodic (by no means trivial)
- 2 Apply learning procedure that makes clever use of trajectories

▶ Q-function:

$$Q_{\mathbb{P}}^{\pi}(s,a) = \mathbb{E}_{\mathbb{P}}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

 \triangleright Classical-Eval (π_k) with unknown \mathbb{P} :

① Deploy π_k , generate trajectory:

$$\xi = \{(S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_t, A_t, C_t), \dots\}$$
 where $A_t \sim \pi_k(\cdot | S_t), S_{t+1} \sim \mathbb{P}(\cdot | S_t, A_t)$

- ullet We assume $\{S_t\}$ is ergodic (by no means trivial)
- 2 Apply learning procedure that makes clever use of trajectories
 - On-policy Monte-Carlo
 - On-policy temporal-difference (TD)

Requirement for Accurate Evaluation

Description: action with zero probability never gets explored

If
$$\pi_k(a|s)=0 \implies (s,a)$$
 does not appear in trajectory ξ
$$\geqslant Q^{\pi_k}(s,a) \text{ not learnable}$$

"Hopefully benign" assumption (IF ...)

$$\inf_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_k(a|s) \ge \underline{\sigma} > 0$$
, for any k

"Policy π_k needs to explore every action"

Requirement for Accurate Evaluation

Description: action with zero probability never gets explored

If
$$\pi_k(a|s) = 0 \implies (s,a)$$
 does not appear in trajectory ξ $\Rightarrow Q^{\pi_k}(s,a)$ not learnable

"Hopefully benign" assumption (IF ...)

$$\inf_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_k(a|s) \ge \underline{\sigma} > 0$$
, for any k

"Policy π_k needs to explore every action"

• Widely assumed in various form (Abbasi-Yadkori et al., '19; Xu et al., '20; Alacaoglu et al., '22; Liu et al., '20; many others)

Tension Between Evaluation and Optimization

Purpose of planning (structure of optimal policies)

$$\mathcal{A}^*(s) \coloneqq \operatorname{Argmin}_{a \in \mathcal{A}} Q^*(s, a) \implies \pi^*(a|s) = 0 \text{ if } a \notin \mathcal{A}^*(s)$$

"Optimal policy π^* does not explore every action"

Tension Between Evaluation and Optimization

Purpose of planning (structure of optimal policies)

$$\mathcal{A}^*(s) \coloneqq \operatorname{Argmin}_{a \in \mathcal{A}} Q^*(s, a) \implies \pi^*(a|s) = 0 \text{ if } a \notin \mathcal{A}^*(s)$$

"Optimal policy π^* does not explore every action"

- If $\pi_k \to \pi^*$ then $\sigma = 0$
 - "benign assumption" does not hold for any meaningful methods

New Evaluation Procedures

- **▷** Some prior development on removing "BIG IF":
 - Explicit exploration: force policy to explore every action
 - mix with uniform distribution (ϵ -exploration): $\mathcal{O}(1/\epsilon^6)$ (Khodadadian et al., '21)
 - policy perturbation within evaluation (Li et al., '22): $\mathcal{O}(1/\epsilon^2)$
 - need to modify the policy within evaluation
 - repeatedly taking high-risk actions

New Evaluation Procedures

- **▷** Some prior development on removing "BIG IF":
 - Explicit exploration: force policy to explore every action
 - mix with uniform distribution (ϵ -exploration): $\mathcal{O}(1/\epsilon^6)$ (Khodadadian et al., '21)
 - policy perturbation within evaluation (Li et al., '22): $\mathcal{O}(1/\epsilon^2)$
 - need to modify the policy within evaluation
 - repeatedly taking high-risk actions
 - No exploration:
 - weighted policy evaluation (Hu et al., '22): $\mathcal{O}(1/\epsilon^{16})$
 - simple, but inefficient

How about best of both worlds?

Preview of our development

Theorem (Li and Lan, '23 - Informal)

An ϵ -optimal policy can be attained by a policy gradient method using $\mathcal{O}(1/\epsilon^2)$ samples, \square

Preview of our development

Theorem (Li and Lan, '23 – Informal)

An ϵ -optimal policy can be attained by a policy gradient method using $\mathcal{O}(1/\epsilon^2)$ samples, \square

- **> Some key ingredients**:
 - Policy improvement: stochastic policy mirror descent (Lan, '21)
 - 2 Policy evaluation: new evaluation operator
 - Truncated Monte-Carlo (biased, converge in high probability)
 - No changes to policy (exploits inherent exploration)
 - 4 Analysis:

Prior development – optimization and evaluation are independent

Preview of our development

Theorem (Li and Lan, '23 – Informal)

An ϵ -optimal policy can be attained by a policy gradient method using $\mathcal{O}(1/\epsilon^2)$ samples, \blacksquare

- ▶ Some key ingredients:
 - O Policy improvement: stochastic policy mirror descent (Lan, '21)
 - 2 Policy evaluation: new evaluation operator
 - Truncated Monte-Carlo (biased, converge in high probability)
 - No changes to policy (exploits inherent exploration)
 - Analysis:

Our perspective – interaction between optimization and evaluation

SPMD with Truncated On-policy Monte-Carlo

* inherent exploration over action space

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimate $\widehat{Q}_{\mathbb{P}}^{\pi_k}$ from $\operatorname{Eval}(\pi_k)$

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}_{\mathbb{P}}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - $oldsymbol{0}$ $w(\cdot)$: distance generating function (many choices)

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimate $\widehat{Q}_{\mathbb{P}}^{\pi_k}$ from $\operatorname{Eval}(\pi_k)$

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}_{\mathbb{P}}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - **1** $w(\cdot)$: distance generating function (many choices)
 - 2 projected gradient: $w(p) = ||p||_2^2$

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimate $\widehat{Q}_{\mathbb{P}}^{\pi_k}$ from $\operatorname{Eval}(\pi_k)$

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}_{\mathbb{P}}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - \bullet $w(\cdot)$: distance generating function (many choices)
 - ② projected gradient: $w(p) = ||p||_2^2$
 - **3** natural policy gradient: $w(p) = \sum_{a \in \mathcal{A}} p_a \log(p_a)$:

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp\left(-\eta_k Q_r^{\pi_k}(s,a)\right)$$

Algorithm SPMD update: $\pi_k \to \pi_{k+1}$

Input: Estimate $\widehat{Q}_{\mathbb{P}}^{\pi_k}$ from $\operatorname{Eval}(\pi_k)$

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle \widehat{Q}_{\mathbb{P}}^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - $oldsymbol{0}$ $w(\cdot)$: distance generating function (many choices)
 - 2 projected gradient: $w(p) = ||p||_2^2$
 - **3** natural policy gradient: $w(p) = \sum_{a \in \mathcal{A}} p_a \log(p_a)$:

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp\left(-\eta_k Q_r^{\pi_k}(s,a)\right)$$

- **1** Tsallis divergence with index $q \in (0,1)$: $w(p) = -\sum_{a \in \mathcal{A}} p_a^q$
 - \bullet π_{k+1} can be computed via simple bisection

Truncated On-policy Monte-Carlo (TOMC)

Algorithm Truncated Monte-Carlo: $\pi_k o \widehat{Q}^{\pi_k}$

Generate a trajectory of length n

$$\{(S_0, A_0, \textcolor{red}{C_0}), (S_1, A_1, \textcolor{red}{C_1}), \dots, (S_{n-1}, A_{n-1}, \textcolor{red}{C_{n-1}})\}$$

for every state-action pair (s, a) **do**

$$t(s,a) = \begin{cases} \text{first timestep hitting } (s,a) \text{ before } n \\ n, \text{otherwise} \end{cases}$$

$$\widehat{Q}^{\pi_k}(s,a) = \sum_{t=t(s,a)}^{n-1} \gamma^{t-t(s,a)} C_t$$

$$\boxed{ \begin{array}{c} \text{if } \pi_k(a|s) < \tau \\ \\ \widehat{Q}^{\pi_k}(s,a) = \frac{1}{1-\gamma} \end{array} } \quad \text{[Truncation step]}$$

end for

- 1 No changes to the policy, no explicit exploration
- ② Forsake learning $Q^{\pi_k}(s,a)$ if $\pi_k(a|s) < \tau$
 - Biased estimate when $\pi_k pprox \pi^*$

SPMD with TOMC

Theorem (Li and Lan, '23 – Informal)

- **1** Apply TOMC for evaluation with proper $\tau > 0$
 - Choose $n = \mathcal{O}(\log(1/\epsilon)/ au)$ at each iteration
- 2 Set proper stepsize

Then SPMD returns an ϵ -optimal policy in $\mathcal{O}(M/\epsilon^2)$ iterations, with high probability.

▶ Some remarks:

- **1** M depend on the divergence $\mathcal{D}^p_{\pi_k}(s)$ in SPMD
 - KL divergence: exponential on $1/(1-\gamma)$ (effective horizon)
 - Tsallis divergence: polynomial

SPMD with TOMC

Theorem (Li and Lan, '23 – Informal)

- **1** Apply TOMC for evaluation with proper $\tau > 0$
 - Choose $n = \mathcal{O}(\log(1/\epsilon)/ au)$ at each iteration
- 2 Set proper stepsize

Then SPMD returns an ϵ -optimal policy in $\mathcal{O}(M/\epsilon^2)$ iterations, with high probability.

Some remarks:

- **1** M depend on the divergence $\mathcal{D}^p_{\pi_k}(s)$ in SPMD
 - KL divergence: exponential on $1/(1-\gamma)$ (effective horizon)
 - Tsallis divergence: polynomial
- 2 Has certain "memory"

$$\pi_k(a|s) < \tau \implies \pi_{k+1}(a|s) < \pi_k(a|s) < \tau$$

Analysis - High-level Overview

> Suppose the policy optimization method comes with:

A certificate \mathbb{C}

If $\pi_k(a|s) < \tau$, then $a \notin \mathcal{A}^*(s)$ (i.e., a is non-optimal at state s)

- \triangleright Existence of $\mathbb C$ for policy optimization methods:
 - **①** Policy iteration does not have \mathbb{C} (Li et al., '22)
 - ② PMD with certain divergences (KL, Tsallis) does!
 - pretty straightforward, but requires exact Q-function
 - $\textbf{ § Stepsize and noise are both important factors in the existence of } \mathbb{C}$

Analysis - High-level Overview

- \triangleright What can we do with \mathbb{C} ?
 - ① If $\pi_k(a|s) \geq \tau$, then a is explored by π_k , and $Q^{\pi_k}(s,a) \text{ can be learned well}$ This is a good thing.

Analysis - High-level Overview

- \triangleright What can we do with \mathbb{C} ?
 - ① If $\pi_k(a|s) \geq au$, then a is explored by π_k , and $Q^{\pi_k}(s,a) \text{ can be learned well}$

This is a good thing.

2 If $\pi_k(a|s) < \tau$, then SPMD + TOMC makes sure

$$\pi_{k+1}(a|s) < \pi_k(a|s)$$

Another good thing! As $\mathbb C$ already guarantees $a \notin \mathcal A^*(s)$

"TOMC learns every action that still matters"

hd Requirement: $\mathbb C$ should hold in high probability

Approach I: Multiple Trajectory

Suppose $\mathbb C$ holds at iter k with prob p, use proper stepsize and trajectory configuration in TOMC so $\mathbb C$ holds at iter k+1 with prob $p'\approx p$

- Requires large number of trajectories ($\mathcal{O}(1/\epsilon^2)$), each of length $\mathcal{O}(\log(1/\epsilon)/\tau)$, for every SPMD step
- $\bullet~\#$ SPMD steps: $\mathcal{O}(1/\epsilon^2)$
- ullet Total sample complexity: $\widetilde{\mathcal{O}}(1/(au\epsilon^4))$

ho Requirement: $\mathbb C$ should hold in high probability

Approach I: Multiple Trajectory

Suppose $\mathbb C$ holds at iter k with prob p, use proper stepsize and trajectory configuration in TOMC so $\mathbb C$ holds at iter k+1 with prob $p'\approx p$

- Requires large number of trajectories ($\mathcal{O}(1/\epsilon^2)$), each of length $\mathcal{O}(\log(1/\epsilon)/\tau)$, for every SPMD step
- ullet # SPMD steps: $\mathcal{O}(1/\epsilon^2)$
- \bullet Total sample complexity: $\widetilde{\mathcal{O}}(1/(\tau\epsilon^4))$
- Interaction between evaluation and optimization
 - \star it suffices to bound the accumulated noise across iterations
 - can bound each noise term in high probability

▶ Requirement: C should hold in high probability

Approach I: Multiple Trajectory

Suppose $\mathbb C$ holds at iter k with prob p, use proper stepsize and trajectory configuration in TOMC so $\mathbb C$ holds at iter k+1 with prob $p'\approx p$

- Requires large number of trajectories ($\mathcal{O}(1/\epsilon^2)$), each of length $\mathcal{O}(\log(1/\epsilon)/\tau)$, for every SPMD step
- ullet # SPMD steps: $\mathcal{O}(1/\epsilon^2)$
- \bullet Total sample complexity: $\widetilde{\mathcal{O}}(1/(\tau\epsilon^4))$
- Interaction between evaluation and optimization
 - * it suffices to bound the accumulated noise across iterations
 - can bound each noise term in high probability
- 2 Selection of au depends on the Bregman divergence
 - KL divergence: $\tau \asymp |\mathcal{A}|^{-1/(1-\gamma)}$
 - Tsallis divergence with index q=1/2 (non-optimal selection): $\tau \asymp (1-\gamma)^4 \, |\mathcal{A}|^{-1}$

▶ Requirement: C should hold in high probability

Approach II: Single Trajectory

- ullet A single trajectory of length $\mathcal{O}(\log(1/\epsilon)/ au)$, for every SPMD step
- # SPMD steps: $\mathcal{O}(1/\epsilon^2)$
- ullet Total sample complexity: $\widetilde{\mathcal{O}}(1/(au\epsilon^2))$
- Interaction between evaluation and optimization
 - * it suffices to bound the accumulated noise across iterations

▶ Requirement: C should hold in high probability

Approach II: Single Trajectory

- A single trajectory of length $\mathcal{O}(\log(1/\epsilon)/\tau)$, for every SPMD step
- # SPMD steps: $\mathcal{O}(1/\epsilon^2)$
- \bullet Total sample complexity: $\widetilde{\mathcal{O}}(1/(\tau\epsilon^2))$
- Interaction between evaluation and optimization
 - * it suffices to bound the accumulated noise across iterations
- ② A more refined probabilistic argument to bound the accumulated noise up to iter t as $\mathcal{O}(\sqrt{t})$
 - \star noise in $Q^{\pi_k,\xi_k}(s,a)$ is policy-dependent (grows when $\pi_k(a|s)$ decays)
 - * truncation in TOMC is essential

Summary

- Evaluation seems at odds with optimization
- $oldsymbol{0}$ SPMD + TOMC with proper divergence exhibits inherent exploration
 - Optimal actions maintain divergence-dependent prob lower bound
 - Non-optimal actions get appropriately ignored
- More details in the paper
 - * An alternative evaluation procedure (unbiased estimate of Q-function regardless of the policy)

Presentation based on Preprint

 Li, Y., & Lan, G. (2023). Policy Mirror Descent Inherently Explores Action Space. arXiv preprint arXiv:2303.04386, under revision at SIOPT