First-order Policy Optimization for Robust Markov Decision Process

Yan Li

Georgia Institute of Technology

Joint work with George Lan, Tuo Zhao

Markov Decision Process & Policy Optimization

MDP and Policy Optimization 00000000000

▶ Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- finite action space: A
- ullet cost function c
- transition kernel P

Markov Decision Process

MDP and Policy Optimization 00000000000

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- finite action space: A
- cost function c
- transition kernel P

Decision making:

- **1** Observe current state S_t and feed into policy
- 2 Make A_t following distribution $\pi(\cdot|S_t)$

> Sequential decision making over multiple timesteps ..

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- finite action space: \mathcal{A}
- ullet cost function c
- ullet transition kernel ${\mathbb P}$

Observing loss: $C_t = c(S_t, A_t) \in [0, 1]$

MDP and Policy Optimization 000000000000

▷ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- finite state space: \mathcal{S}
- finite action space: A
- cost function c
- transition kernel P

State transition: S_{t+1} follows distribution $\mathbb{P}(\cdot|S_t, A_t)$

Repeat decision process ...

Markov Decision Process

MDP and Policy Optimization 000000000000

▷ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- finite state space: \mathcal{S}
- finite action space: A
- cost function c
- transition kernel P

Trajectory:

$$\{(S_0, A_0, C_0), (S_1, A_1, C_1), \dots, (S_t, A_t, C_t), \dots\}$$

MDP and Policy Optimization 000000000000

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- finite state space: S
- finite action space: A
- cost function c
- transition kernel P

Performance (value function):

$$V_{\mathbb{P}}^{\pi}(s) = \mathbb{E}_{\mathbb{P}}^{\pi} ig[\sum_{t=0}^{\infty} \underbrace{\gamma^t C_t}_{ ext{discounting future}} ig| S_0 = s ig]$$

Markov Decision Process

MDP and Policy Optimization 000000000000

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- finite action space: A
- cost function c
- transition kernel P

Planning: find the optimal policy of

$$\min_{\pi} V_{\mathbb{P}}^{\pi}(s), \ \forall s \in \mathcal{S}$$

Markov Decision Process

MDP and Policy Optimization 000000000000

▶ Sequential decision making over multiple timesteps ...

Key elements

- policy π
- ullet finite state space: ${\cal S}$
- finite action space: A
- cost function c
- transition kernel P

Planning with an equivalent objective:

$$\min_{\pi} f_{\rho}(\pi) = \sum_{s \in \mathcal{S}} \rho(s) V_{\mathbb{P}}^{\pi}(s) \quad \Rightarrow \quad \underline{\text{Non-convex}}$$

Planning Methods for MDP

MDP and Policy Optimization 000000000000

- Linear programming based methods
 - stochastic primal-dual methods
- Oynamic programming based methods
 - stochastic value iteration or Q-Learning
 - can diverge even with linear approximation
- Nonlinear programming based methods
 - policy gradient methods
 - much more friendly to function approximation
 - Only until very recently, these methods were shown to exhibit comparable or even superior performance guarantees than alternative methods

Policy Gradients - Overview

MDP and Policy Optimization 000000000000

First-order policy optimization:

- 2 Construct gradient information G_k
- Repeat ...

000000000000

Q-function:

$$Q_{\mathbb{P}}^{\pi}(s, a) = \mathbb{E}_{\mathbb{P}}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) \middle| S_{0} = s, A_{0} = a \right]$$

Policy Gradients - A Basic Skeleton

* Challenges:

- Non-convex landscape
- Transition \mathbb{P} and cost $c(\cdot)$ can be unknown

Policy Gradients – Existing Development

- Deterministic setting: exact first-order information:
 - Even-Dar, Kakade, Mansour '09: $\mathcal{O}(1/\sqrt{T})$
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/T)$
 - Cen et. al. '20: linear for entropy regularized MDPs

- Open Deterministic setting: exact first-order information:
 - Even-Dar, Kakade, Mansour '09: $\mathcal{O}(1/\sqrt{T})$
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/T)$
 - Cen et. al. '20: linear for entropy regularized MDPs
- Stochastic setting sample complexity
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/\epsilon^4)$
 - Shani, Efroni, Mannor '20: $\mathcal{O}(1/\epsilon^4)$ and $\mathcal{O}(1/\epsilon^3)$ for entropy regularized **MDPs**

Policy Gradients – Existing Development

- Open Deterministic setting: exact first-order information:
 - Even-Dar, Kakade, Mansour '09: $\mathcal{O}(1/\sqrt{T})$
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/T)$
 - Cen et. al. '20: linear for entropy regularized MDPs
- Stochastic setting sample complexity
 - Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/\epsilon^4)$
 - Shani, Efroni, Mannor '20: $\mathcal{O}(1/\epsilon^4)$ and $\mathcal{O}(1/\epsilon^3)$ for entropy regularized **MDPs**
- Olicy mirror descent (Lan, '21)
 - Deterministic: linear for both regularized and un-regularized
 - Stochastic: $\mathcal{O}(1/\epsilon^2)$ un-regularized; $\mathcal{O}(1/\epsilon)$ regularized

I: Planning with Pre-collected Data $\mathcal D$

Direct approach

- ① Estimate transition kernel $\widehat{\mathbb{P}} \approx \mathbb{P}$ from \mathcal{D}
- 2 Planning with estimated $\widehat{\mathbb{P}}$

Motivating Examples

I: Planning with Pre-collected Data $\mathcal D$

Direct approach

- ① Estimate transition kernel $\widehat{\mathbb{P}} \approx \mathbb{P}$ from \mathcal{D}
- 2 Planning with estimated $\widehat{\mathbb{P}}$

Subject to randomness/error in data collection

I: Planning with Pre-collected Data $\mathcal D$

Direct approach

- ① Estimate transition kernel $\widehat{\mathbb{P}} \approx \mathbb{P}$ from \mathcal{D}
- 2 Planning with estimated $\widehat{\mathbb{P}}$

Subject to randomness/error in data collection

Robust approach

- **1** Construct \mathcal{P} s.t. $\mathbb{P} \in \mathcal{P}$ with high confidence
- Planning within \mathcal{P} to hedge against randomness

Motivating Examples

II: Sim-to-real Transition (Robotics)

- \bullet Training environment (simulation) has $\mathbb{P}_{\rm sim}$
- \bullet Deployment (real-life) environment has $\mathbb{P}_{\rm real}\approx\mathbb{P}_{\rm sim}$, but not equal
- \bullet Ultimate goal is to perform well for $\mathbb{P}_{\mathrm{real}}$

- \bullet Training environment (simulation) has $\mathbb{P}_{\rm sim}$
- ullet Deployment (real-life) environment has $\mathbb{P}_{\mathrm{real}} pprox \mathbb{P}_{\mathrm{sim}}$, but not equal
- \bullet Ultimate goal is to perform well for $\mathbb{P}_{\mathrm{real}}$

Robust approach

- **①** Construct \mathcal{P} based on robustness preference
 - ϵ -contamination model (Huber, '64):

$$\mathcal{P} = \{(1-\epsilon)\mathbb{P}_{\mathrm{sim}} + \epsilon \mathbb{Q} : \mathbb{Q} \in \mathcal{Q} \text{ (pre-specified)}\}$$

• KL-divergence based:

$$\mathcal{P} = \{ \mathbb{P} : \mathrm{KL}(\mathbb{P}(\cdot|s, a) || \mathbb{P}_{\mathrm{sim}}(\cdot|s, a)) \le \epsilon \}$$

- ullet Large ϵ yields stronger robustness
- **2** Planning within \mathcal{P} to hedge against environment changes
 - \bullet Can only samples from interaction with $\mathbb{P}_{\rm sim}$

▶ Robust Objective:

$$\min_{\pi} \left\{ f_r(\pi) := \sum_{s \in \mathcal{S}} \rho(s) \underbrace{\max_{\mathbb{P} \in \mathcal{P}} V_{\mathbb{P}}^{\pi}(s)}_{V_{\mathcal{T}}^{\pi}(s)} \right\}$$

- $\mathcal{P} = \{ \mathbb{P} : \mathbb{P}(\cdot|s,a) = \mathbb{P}_{\mathbb{N}}(\cdot|s,a) + u(\cdot|s,a), \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}, u \in \mathcal{U} \}.$
- ullet \mathbb{P}_{N} : nominal transition kernel
- \bullet \mathcal{U} : set of possible perturbations
- Non-convex, non-smooth in π

▶ Robust Objective:

$$\min_{\pi} \left\{ f_r(\pi) \coloneqq \sum_{s \in \mathcal{S}} \rho(s) \underbrace{\max_{\mathbb{P} \in \mathcal{P}} V_{\mathbb{P}}^{\pi}(s)}_{V_r^{\pi}(s)} \right\}$$

- $\mathcal{P} = \{ \mathbb{P} : \mathbb{P}(\cdot|s,a) = \mathbb{P}_{\mathbb{N}}(\cdot|s,a) + u(\cdot|s,a), \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}, u \in \mathcal{U} \}.$
- ullet \mathbb{P}_N : nominal transition kernel
- ullet \mathcal{U} : set of possible perturbations
- ullet Non-convex, non-smooth in π

> Structure of Ambiguity Set:

 \bullet (s, a)-rectangularity [our focus]:

$$\mathcal{P} = \Pi_{(s,a) \in \mathcal{S} \times \mathcal{A}} \ \mathcal{P}_{s,a}, \ \mathcal{P}_{s,a} \subseteq \Delta_{\mathcal{S}}$$

- No coupling of uncertainties for different state-action pair
- Equivalence to nested robust formulation

▶ Robust Objective:

$$\min_{\pi} \left\{ f_r(\pi) \coloneqq \sum_{s \in \mathcal{S}} \rho(s) \underbrace{\max_{\mathbb{P} \in \mathcal{P}} V_{\mathbb{P}}^{\pi}(s)}_{V_r^{\pi}(s)} \right\}$$

- $\mathcal{P} = \{ \mathbb{P} : \mathbb{P}(\cdot|s,a) = \mathbb{P}_{\mathbb{N}}(\cdot|s,a) + u(\cdot|s,a), \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}, u \in \mathcal{U} \}.$
- \bullet \mathbb{P}_{N} : nominal transition kernel
- \mathcal{U} : set of possible perturbations
- Non-convex, non-smooth in π

▷ Structure of Ambiguity Set:

(s, a)-rectangularity [our focus]:

$$\mathcal{P} = \Pi_{(s,a) \in \mathcal{S} \times \mathcal{A}} \ \mathcal{P}_{s,a}, \ \mathcal{P}_{s,a} \subseteq \Delta_{\mathcal{S}}$$

- No coupling of uncertainties for different state-action pair
- Equivalence to nested robust formulation
- 2 Popular alternatives: s-rectangularity (Wiesemann et al., '13), r-rectangularity (Goyal and Grand-Clement, '23)
 - See Li and Shapiro for a unified treatment
- General cases: NP hard

Can we learn robust policy, while given different levels of access to \mathcal{P} ?

- \triangleright "Access of \mathcal{P} "
 - $\textbf{0} \ \, \mathsf{Deterministic:} \ \, \mathsf{Both} \, \, \mathbb{P}_N \, \, \mathsf{and} \, \, \mathcal{U} \, \, \mathsf{are} \, \, \mathsf{known} \, \,$
 - 2 Stochastic: can only draw samples/trajectories from \mathbb{P}_N

Can we learn robust policy, while given different levels of access to \mathcal{P} ?

- \triangleright "Access of \mathcal{P} "
 - **1** Deterministic: Both \mathbb{P}_N and \mathcal{U} are known
 - 2 Stochastic: can only draw samples/trajectories from \mathbb{P}_N
- - Value based methods (vast majority):
 - Tamar et. al, '14; Roy et. al, '17; Liu et. al, '22; many others
 - Policy gradient methods (relatively few):
 - Wang and Zou, '22: smoothing argument
 - \circ $\mathcal{O}(1/\epsilon^3)$ iterations in deterministic setting
 - $\mathcal{O}(1/\epsilon^7)$ samples in stochastic setting
 - Tailors to special (s, a)-rectangular set
 - Wang et al., '23: smoothing argument
 - $\mathcal{O}(1/\epsilon^4)$ iterations in deterministic setting
 - Non-optimal (even $\mathcal{U} = \{0\}$)

Robust Policy Mirror Descent: Preview

▶ Robust Policy Mirror Descent

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{\mathbb{P} \in \mathcal{P}} Q_{\mathbb{P}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s,\cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

▶ Robust Policy Mirror Descent

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{\mathbb{P} \in \mathcal{P}} Q_{\mathbb{P}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_A} \eta_k \langle Q_r^{\pi_k}(s,\cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Parameters and Variants

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - w(·): distance generating function (many choices)
 - 2 projected gradient: $w(p) = ||p||_2^2$

▶ Robust Policy Mirror Descent

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{\mathbb{P} \in \mathcal{P}} Q_{\mathbb{P}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Parameters and Variants

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - w(·): distance generating function (many choices)
 - 2 projected gradient: $w(p) = ||p||_2^2$
 - onatural policy gradient: $w(p) = \sum_{a \in A} p_a \log(p_a)$:

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp\left(-\eta_k Q_r^{\pi_k}(s,a)\right)$$

▶ Robust Policy Mirror Descent

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{\mathbb{P} \in \mathcal{P}} Q_{\mathbb{P}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Parameters and Variants

- η_k stepsize
- $\mathcal{D}_{\pi_k}^p(s) = w(p) w(\pi_k(\cdot|s)) \langle \nabla w(\pi_k(\cdot|s)), p \pi_k(\cdot|s) \rangle$
 - w(·): distance generating function (many choices)
 - 2 projected gradient: $w(p) = ||p||_2^2$
 - onatural policy gradient: $w(p) = \sum_{a \in A} p_a \log(p_a)$:

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp\left(-\eta_k Q_r^{\pi_k}(s,a)\right)$$

- Tsallis divergence with index $q \in (0,1)$: $w(p) = -\sum_{a \in A} p_a^p$
 - π_{k+1} can be computed using simple bisection (Li and Lan, '23)

▶ Robust Policy Mirror Descent

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{\mathbb{P} \in \mathcal{P}} Q_{\mathbb{P}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s,\cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

1 Versatile: recovers PMD for non-robust MDP (Lan, '21)

▶ Robust Policy Mirror Descent

Algorithm RPMD update: $\pi_k \to \pi_{k+1}$

Input: Compute robust $Q_r^{\pi_k} := \max_{\mathbb{P} \in \mathcal{P}} Q_{\mathbb{P}}^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k}(s,\cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

- Versatile: recovers PMD for non-robust MDP (Lan, '21)
- 2 Efficient:
 - Deterministic setting (exact $Q_r^{\pi_k}$): $\mathcal{O}(\log(1/\epsilon))$ iterations
 - Stochastic setting (estimated $Q_r^{\pi_k}$): $\mathcal{O}(1/\epsilon^2)$ samples
 - ullet Optimal dependence on ϵ

First-order Viewpoint and Intuitions

Issues with Policy Gradients

▶ Not-so-friendly Landscape

- $\ \, \textbf{0} \, \, \, V^\pi_r(s)$ is only almost everywhere (Hausdorff sense) differentiable
- 2 Need to handle potential non-smoothness/non-differentiability

▶ Not-so-friendly Landscape

- $V_r^{\pi}(s)$ is only almost everywhere (Hausdorff sense) differentiable
- Need to handle potential non-smoothness/non-differentiability

▶ Additional Issues

• The analytic form of gradient (if exists):

$$\nabla f_r(\pi)[s,a] = \frac{1}{1-\gamma} d_\rho^{\pi,\mathbb{P}_\pi}(s) Q_r^{\pi}(s,a)$$

- $d_{\rho}^{\pi,\mathbb{P}_{\pi}}(s) := (1-\gamma) \sum_{s' \in S} \sum_{t=0}^{\infty} \gamma^{t} \rho(s') \operatorname{Prob}^{\pi,\mathbb{P}_{\pi}}(S_{t} = s | S_{0} = s')$
- needs worst kernel \mathbb{P}_{π} of π difficult to compute/estimate

Issues with Policy Gradients

▶ Not-so-friendly Landscape

- $V_r^{\pi}(s)$ is only almost everywhere (Hausdorff sense) differentiable
- Need to handle potential non-smoothness/non-differentiability

Additional Issues

The analytic form of gradient (if exists):

$$\nabla f_r(\pi)[s,a] = \frac{1}{1-\gamma} d_\rho^{\pi,\mathbb{P}_\pi}(s) Q_r^{\pi}(s,a)$$

- $d_o^{\pi, \mathbb{P}_{\pi}}(s) := (1 \gamma) \sum_{s' \in S} \sum_{t=0}^{\infty} \gamma^t \rho(s') \operatorname{Prob}^{\pi, \mathbb{P}_{\pi}}(S_t = s | S_0 = s')$
- needs worst kernel \mathbb{P}_{π} of π difficult to compute/estimate
- Q Going from gradient stationarity to global optimality is indirect
 - Need additional smoothing (Wang and Zou, '22, Wang et al., '23)
 - Local-to-global conversion already non-optimal in non-robust case

Issues with Policy Gradients

▶ Not-so-friendly Landscape

- $V_r^{\pi}(s)$ is only almost everywhere (Hausdorff sense) differentiable
- Need to handle potential non-smoothness/non-differentiability

Additional Issues

• The analytic form of gradient (if exists):

$$\nabla f_r(\pi)[s,a] = \frac{1}{1-\gamma} d_\rho^{\pi,\mathbb{P}_\pi}(s) Q_r^{\pi}(s,a)$$

- $d_o^{\pi, \mathbb{P}_{\pi}}(s) := (1 \gamma) \sum_{s' \in S} \sum_{t=0}^{\infty} \gamma^t \rho(s') \operatorname{Prob}^{\pi, \mathbb{P}_{\pi}}(S_t = s | S_0 = s')$
- needs worst kernel \mathbb{P}_{π} of π difficult to compute/estimate
- Q Going from gradient stationarity to global optimality is indirect
 - Need additional smoothing (Wang and Zou, '22, Wang et al., '23)
 - Local-to-global conversion already non-optimal in non-robust case
 - * Need alternative first-order information *

"Useful" First-order Information

* Robust Q-function as "Subgradient" *

Local Improvement

$$V_r^{\pi'}(s) - V_r^{\pi}(s) \le \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d_s^{\pi'}, \mathbb{P}_{\pi'}} \langle Q_r^{\pi}, \pi' - \pi \rangle_{s'}$$

• Following $-Q_r^{\pi}$ improves the value

"Useful" First-order Information

* Robust Q-function as "Subgradient" *

▶ Local Improvement

$$V_r^{\pi'}(s) - V_r^{\pi}(s) \le \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d_s^{\pi'}, \mathbb{P}_{\pi'}} \left\langle Q_r^{\pi}, \pi' - \pi \right\rangle_{s'}$$

- Following $-Q_r^{\pi}$ improves the value
- **⊳ Global Convergence**

$$\mathbb{E}_{s' \sim d_s^{\pi^*, \mathbb{P}_{\pi}}} \left[\left\langle Q_r^{\pi}, \pi - \pi^* \right\rangle_{s'} \right] \ge (1 - \gamma) \left(V_r^{\pi}(s) - V_r^{\pi^*}(s) \right)$$

- ullet Q_r^π provides enough information on optimality gap
 - * Proper state aggregation is required

"Useful" First-order Information

* Robust Q-function as "Subgradient" *

▶ Local Improvement

$$V_r^{\pi'}(s) - V_r^{\pi}(s) \le \frac{1}{1-\gamma} \mathbb{E}_{s' \sim d_s^{\pi'}, \mathbb{P}_{\pi'}} \langle Q_r^{\pi}, \pi' - \pi \rangle_{s'}$$

- Following $-Q_r^{\pi}$ improves the value

$$\mathbb{E}_{s' \sim d_s^{\pi^*, \mathbb{P}_{\pi}}} \left[\left\langle Q_r^{\pi}, \pi - \pi^* \right\rangle_{s'} \right] \ge (1 - \gamma) \left(V_r^{\pi}(s) - V_r^{\pi^*}(s) \right)$$

- Q_r^{π} provides enough information on optimality gap
 - * Proper state aggregation is required
- $\triangleright Q_r^{\pi}$ bears great similarities of subgradients for convex problems

Robust Policy Mirror Descent: Deterministic Setting

Theorem

Let $M = \sup_{\mathbb{P} \in \mathcal{P}} \|d_{\rho}^{\pi^*, \mathbb{P}}/\rho\|_{\infty}$ and $M' = \sup_{\mathbb{P}, \mathbb{P}' \in \mathcal{P}} \|d_{\rho}^{\pi^*, \mathbb{P}}/d_{\rho}^{\pi^*, \mathbb{P}'}\|_{\infty}$. In RPMD, choosing $\eta_k > \eta_{k-1} \left(1 - \frac{1-\gamma}{M}\right)^{-1} M'$ yields

$$f_{\rho}(\pi_k) - f_{\rho}(\pi^*) \le \left(1 - \frac{1 - \gamma}{M}\right)^k \cdot \underbrace{\mathcal{O}(1)}_{\text{from initialization}}$$

First linear rate for first-order policy based method

Theorem

Let $M = \sup_{\mathbb{P} \in \mathcal{P}} \|d_{\rho}^{\pi^*, \mathbb{P}}/\rho\|_{\infty}$ and $M' = \sup_{\mathbb{P}, \mathbb{P}' \in \mathcal{P}} \|d_{\rho}^{\pi^*, \mathbb{P}}/d_{\rho}^{\pi^*, \mathbb{P}'}\|_{\infty}$. In RPMD, choosing $\eta_k > \eta_{k-1} \left(1 - \frac{1-\gamma}{M}\right)^{-1} M'$ yields

$$f_{\rho}(\pi_k) - f_{\rho}(\pi^*) \le \left(1 - \frac{1 - \gamma}{M}\right)^k \cdot \underbrace{\mathcal{O}(1)}_{from initialization}$$

- First linear rate for first-order policy based method
- Subsumes the special case of non-robust MDPs

$$M = \|d_{\rho}^{\pi^*}/\rho\|_{\infty}, \ M' = 1.$$

Theorem

Let $M = \sup_{\mathbb{P} \in \mathcal{P}} \|d_{\rho}^{\pi^*, \mathbb{P}}/\rho\|_{\infty}$ and $M' = \sup_{\mathbb{P}' \in \mathcal{P}} \|d_{\rho}^{\pi^*, \mathbb{P}'}/d_{\rho}^{\pi^*, \mathbb{P}'}\|_{\infty}$. In RPMD,

choosing $\eta_k \geq \eta_{k-1} \left(1 - \frac{1-\gamma}{M}\right)^{-1} M'$ yields

$$f_{\rho}(\pi_k) - f_{\rho}(\pi^*) \le \left(1 - \frac{1 - \gamma}{M}\right)^k \cdot \underbrace{\mathcal{O}(1)}_{from \ initialization}$$

- First linear rate for first-order policy based method
- 2 Subsumes the special case of non-robust MDPs

$$M = \|d_{\rho}^{\pi^*}/\rho\|_{\infty}, \ M' = 1.$$

- **3** Unclear whether dependence on M is tight
 - Appears also for non-robust MDP with linear rate
 - Seems removable with a sublinear rate

Robust Policy Mirror Descent: Stochastic Setting

Stochastic Robust Policy Mirror Descent

Algorithm SRPMD update: $\pi_k \to \pi_{k+1}$

Input: Evaluate $\widehat{Q}_r^{\pi_k,\xi_k} \approx Q_r^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k, \xi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Stochastic Robust Policy Mirror Descent

Algorithm SRPMD update: $\pi_k \to \pi_{k+1}$

Input: Evaluate $\widehat{Q}_r^{\pi_k,\xi_k} \approx Q_r^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_A} \eta_k \langle Q_r^{\pi_k, \xi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Theorem

With the same stepsize as RPMD, if $\mathbb{E}_{\xi_k} \|Q_r^{\pi_k, \xi_k} - Q_r^{\pi_k}\|_{\infty} \leq e$ for all $k \geq 0$, then

$$\mathbb{E}\left[f_{\rho}(\pi_k) - f_{\rho}(\pi^*)\right] \le \left(1 - \frac{1 - \gamma}{M}\right)^k \cdot \underbrace{\mathcal{O}(1)}_{} + \frac{4Me}{(1 - \gamma)^2}$$

from initialization

Algorithm SRPMD update: $\pi_k \to \pi_{k+1}$

Input: Evaluate $\widehat{Q}_r^{\pi_k,\xi_k} \approx Q_r^{\pi_k}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_A} \eta_k \langle Q_r^{\pi_k, \xi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Theorem

With the same stepsize as RPMD, if $\mathbb{E}_{\xi_k} \|Q_r^{\pi_k, \xi_k} - Q_r^{\pi_k}\|_{\infty} \leq e$ for all $k \geq 0$, then

$$\mathbb{E}\left[f_{\rho}(\pi_{k}) - f_{\rho}(\pi^{*})\right] \leq \left(1 - \frac{1 - \gamma}{M}\right)^{k} \cdot \underbrace{\mathcal{O}(1)}_{\text{from initialization}} + \frac{4Me}{(1 - \gamma)^{2}}$$

Algorithm SRPMD update: $\pi_k \to \pi_{k+1}$

Input: Evaluate $\widehat{Q}_r^{\pi_k,\xi_k} \approx Q_r^{\pi_k}$

it: Evaluate $Q_r^{n n} \approx Q_r^{n n}$

Update: For every state $s \in \mathcal{S}$:

$$\pi_{k+1}(\cdot|s) = \operatorname{argmin}_{p \in \Delta_{\mathcal{A}}} \eta_k \langle Q_r^{\pi_k, \xi_k}(s, \cdot), p \rangle + \mathcal{D}_{\pi_k}^p(s)$$

Theorem

With the same stepsize as RPMD, if $\mathbb{E}_{\xi_k} \|Q_r^{\pi_k, \xi_k} - Q_r^{\pi_k}\|_{\infty} \le e$ for all $k \ge 0$, then

$$\mathbb{E}\left[f_{\rho}(\pi_{k}) - f_{\rho}(\pi^{*})\right] \leq \left(1 - \frac{1 - \gamma}{M}\right)^{k} \cdot \underbrace{\mathcal{O}(1)}_{\text{from initialization}} + \frac{4Me}{(1 - \gamma)^{2}}$$

- ▷ Converges up to the noise level
- ightharpoonup Need to interact with \mathbb{P}_N to learn robust Q-function

Exploiting Access to \mathbb{P}_N

\triangleright when \mathcal{U} is known

Algorithm Robust Temporal Difference Learning: $\pi \to Q_r^{\pi,\xi}$

for
$$t=0,1,\ldots$$
 do Collect $s_{t+1}\sim \mathbb{P}_{\mathrm{N}}(\cdot|s_t,a_t)$, and make action $a_{t+1}\sim \pi(\cdot|s_{t+1})$ Update:

$$\theta_{t+1} = \theta_t + \alpha_t \left[c(s_t, a_t) + \gamma \theta_t(s_{t+1}, a_{t+1}) \right.$$
$$+ \sigma_{\mathcal{U}_{s_t, a_t}}(M(\pi, \theta_t)) - \theta_t(s_t, a_t) \left] e(s_t, a_t) \right]$$

end for

• $\sigma_X(\cdot)$ is the support function of X, $[M(\pi,x)](s) = \sum_{a \in A} \pi(a|s)x(s,a)$

Learning the Robust Q-function

Exploiting Access to \mathbb{P}_N

\triangleright when $\mathcal U$ is known

Algorithm Robust Temporal Difference Learning: $\pi \to Q_r^{\pi,\xi}$

for
$$t=0,1,\ldots$$
 do Collect $s_{t+1}\sim \mathbb{P}_{\mathrm{N}}(\cdot|s_t,a_t)$, and make action $a_{t+1}\sim \pi(\cdot|s_{t+1})$ Update:

$$\theta_{t+1} = \theta_t + \alpha_t \left[c(s_t, a_t) + \gamma \theta_t(s_{t+1}, a_{t+1}) \right.$$
$$+ \sigma_{\mathcal{U}_{s_t, a_t}}(M(\pi, \theta_t)) - \theta_t(s_t, a_t) \left] e(s_t, a_t) \right]$$

end for

- $\sigma_X(\cdot)$ is the support function of X, $[M(\pi,x)](s) = \sum_{a \in \mathcal{A}} \pi(a|s)x(s,a)$
- ullet When $\mathcal{U}=\{\mathbf{0}\}$, reduces to standard TD

Learning the Robust Q-function

Exploiting Access to \mathbb{P}_{N}

\triangleright when \mathcal{U} is known

Algorithm Robust Temporal Difference Learning: $\pi \to Q_r^{\pi,\xi}$

 $\quad \text{for } t=0,1,\dots \text{ do }$

Collect $s_{t+1} \sim \mathbb{P}_{N}(\cdot|s_t, a_t)$, and make action $a_{t+1} \sim \pi(\cdot|s_{t+1})$ Update:

 $\theta_{t+1} = \theta_t + \alpha_t [c(s_t, a_t) + \gamma \theta_t(s_{t+1}, a_{t+1}) + \sigma_{\mathcal{U}_{t+1}, a_t} (M(\pi, \theta_t)) - \theta_t(s_t, a_t)] e(s_t, a_t)$

end for

- $\sigma_X(\cdot)$ is the support function of X, $[M(\pi,x)](s) = \sum_{a \in \mathcal{A}} \pi(a|s)x(s,a)$
- ullet When $\mathcal{U}=\{\mathbf{0}\}$, reduces to standard TD
- \triangleright when $\mathcal U$ is unknown
 - **1** Trivially extends to ϵ -contamination model
 - Unbiased robust Bellman evaluation operator is available
 - 2 Can be extended to KL-divergence based \mathcal{P}
 - Dual representation + multi-level Monte Carlo (Liu et al. '22, Wang et al., '23)

Sample Complexity of RTD and SRPMD

▶ Sample complexity of Robust TD

Proposition

For any $\epsilon > 0$, with properly chosen $\{\alpha_t\}$, the RTD method needs at most

$$T = \widetilde{\mathcal{O}}\left(\frac{\log^2(1/\epsilon)}{(1-\gamma)^5\epsilon^2}\right)$$

iterations to find an estimate θ_T satisfying $\mathbb{E}_{\varepsilon} \|\theta_T - Q_r^{\pi}\|_{\infty} \leq \epsilon$.

Sample Complexity of RTD and SRPMD

Sample complexity of Robust TD

Proposition

For any $\epsilon > 0$, with properly chosen $\{\alpha_t\}$, the RTD method needs at most

$$T = \widetilde{\mathcal{O}}\left(\frac{\log^2(1/\epsilon)}{(1-\gamma)^5\epsilon^2}\right)$$

iterations to find an estimate θ_T satisfying $\mathbb{E}_{\varepsilon} \|\theta_T - Q_r^{\pi}\|_{\infty} \leq \epsilon$.

▶ Sample complexity of SRPMD

Theorem

With the same stepsize chosen as before, total number of samples required by SRPMD for finding an ϵ -optimal policy can be bounded by

$$\widetilde{\mathcal{O}}\left(\frac{M^3\log^2\left(4M/(\epsilon(1-\gamma)^2)\right)}{(1-\gamma)^{10}\epsilon^2}\right).$$

• We believe the dependence on $(1-\gamma)^{-1}$ can be improved

Robust Policy Mirror Descent: (Linear) Function Approximation

Preview of Linear Approximation

 \triangleright The essential target: Find θ^{π} so that

$$\|\underbrace{\phi(\cdot,\cdot)^{\top}\theta^{\pi}}_{Q^{\pi}_{\theta^{\pi}}} - Q^{\pi}_{r}(\cdot,\cdot)\|_{\infty}$$

can be controlled.

Isn't linear function approximation easy?

Preview of Linear Approximation

 \triangleright The essential target: Find θ^{π} so that

$$\|\underbrace{\phi(\cdot,\cdot)^\top\theta^\pi}_{Q^\pi_{\theta^\pi}} - Q^\pi_r(\cdot,\cdot)\|_\infty$$

can be controlled.

Isn't linear function approximation easy?

• Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}^{\pi} Q_{\theta}^{\pi} \rightarrow \theta^{\pi}$$

- \mathcal{T}^{π} Robust Bellman operator of Q_r^{π}
- $\Pi_{\phi,\nu}$ the projection onto $\mathrm{span}(\Psi)$ in $\|\cdot\|_{
 u}$
- $\Pi_{\phi,\nu} \mathcal{T}^{\pi}$ a contraction
- Roots of TD and many variants

Preview of Linear Approximation

 \triangleright The essential target: Find θ^{π} so that

$$\|\underbrace{\phi(\cdot,\cdot)^{\top}\theta^{\pi}}_{Q_{\theta^{\pi}}^{\pi}} - Q_r^{\pi}(\cdot,\cdot)\|_{\infty}$$

can be controlled.

Isn't linear function approximation easy?

• Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}^{\pi} Q_{\theta}^{\pi} \rightarrow \theta^{\pi}$$

- \mathcal{T}^{π} Robust Bellman operator of Q_r^{π}
- $\Pi_{\phi,\nu}$ the projection onto $\operatorname{span}(\Psi)$ in $\|\cdot\|_{\nu}$
- $\Pi_{\phi,\nu} \mathcal{T}^{\pi}$ a contraction
- Roots of TD and many variants
- 2 Minimize Bellman residual:

$$\min_{\theta} \|Q_{\theta}^{\pi}(\cdot, \cdot) - \mathcal{T}^{\pi} Q_{\theta}^{\pi}(\cdot, \cdot)\|_{2}^{2} \rightarrow \theta^{\pi}$$

Easily combined and nonlinear approximations (e.g., NNs)

Why is linear function approximation difficult (for robust evaluation)?

Why is linear function approximation difficult (for robust evaluation)?

Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi} \not\to \theta^{\pi}$$

- $\mathcal{T}^\pi_{\mathrm{robust}}$ Bellman operator of Q^π $\Pi_{\phi, \nu} \mathcal{T}^\pi_{\mathrm{robust}}$ NOT a contraction
- Does not even have a solution
- Robust TD diverges with linear approximation

Why is linear function approximation difficult (for robust evaluation)?

Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi} \not\to \theta^{\pi}$$

- $\mathcal{T}^\pi_{\mathrm{robust}}$ Bellman operator of Q^π $\Pi_{\phi, \nu} \mathcal{T}^\pi_{\mathrm{robust}}$ NOT a contraction
- Does not even have a solution
- Robust TD diverges with linear approximation
- Minimize Bellman residual:

$$\min_{\theta} \|Q_{\theta}^{\pi}(\cdot, \cdot) - \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi}(\cdot, \cdot)\|_{2}^{2} \not \prec \theta^{\pi}$$

• Non-convex in θ

Why is linear function approximation difficult (for robust evaluation)?

Fixed-point (contraction) based:

$$Q_{\theta}^{\pi} = \Pi_{\phi,\nu} \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi} \not\to \theta^{\pi}$$

- $\mathcal{T}^\pi_{\mathrm{robust}}$ Bellman operator of Q^π $\Pi_{\phi, \nu} \mathcal{T}^\pi_{\mathrm{robust}}$ NOT a contraction
- Does not even have a solution
- Robust TD diverges with linear approximation
- Minimize Bellman residual:

$$\min_{\theta} \|Q_{\theta}^{\pi}(\cdot, \cdot) - \mathcal{T}_{\text{robust}}^{\pi} Q_{\theta}^{\pi}(\cdot, \cdot)\|_{2}^{2} \not \rtimes \theta^{\pi}$$

• Non-convex in θ

Current Development

No assumption-free convergent method for robust policy evaluation with linear approximation even in the deterministic setting

• State space: $\mathcal{S} \times \mathcal{A}$

• Action space: $\mathcal{P}_{s,a}$ for each (s,a)

• Transition: transition of $\{(s_t,a_t)\}$ generated by π deployed in \mathbb{P} , where \mathbb{P} is determined by nature's policy

• Cost: -c(s, a)

Robust Evaluation as Policy Optimization

▶ MDP of Nature:

- State space: $\mathcal{S} \times \mathcal{A}$
- Action space: $\mathcal{P}_{s,a}$ for each (s,a)
- Transition: transition of $\{(s_t, a_t)\}$ generated by π deployed in \mathbb{P} , where \mathbb{P} is determined by nature's policy
- Cost: -c(s, a)
- **Observation:** optimal value function of nature equals to $-Q_r^{\pi}(s,a)$

Question: can we optimize nature's MDP efficiently?

▶ MDP of Nature:

- State space: $\mathcal{S} \times \mathcal{A}$
- Action space: $\mathcal{P}_{s,a}$ for each (s,a)
- Transition: transition of $\{(s_t, a_t)\}$ generated by π deployed in \mathbb{P} , where \mathbb{P} is determined by nature's policy
- Cost: -c(s, a)
- **Observation:** optimal value function of nature equals to $-Q_r^{\pi}(s,a)$

Question: can we optimize nature's MDP efficiently?

- ▷ Computational challenges at the first sight:
 - Continuous action space
 - 2 We do not want to parameterize the policy
 - Essentially this requires saving the model (model-based)

▶ MDP of Nature:

- State space: $\mathcal{S} \times \mathcal{A}$
- Action space: $\mathcal{P}_{s,a}$ for each (s,a)
- Transition: transition of $\{(s_t, a_t)\}$ generated by π deployed in \mathbb{P} , where \mathbb{P} is determined by nature's policy
- Cost: -c(s, a)
- \triangleright **Observation:** optimal value function of nature equals to $-Q_r^{\pi}(s,a)$

Question: can we optimize nature's MDP efficiently?

Yes, $\mathcal{O}(1/\epsilon^2)$ sample suffices, even with linear approximation.

Also can be incorporated with NNs.

The method does not parameterize the policy of nature (model-free).

Summary

- **1** RPMD for robust MDP with (s, a)-rectangular ambiguity
 - Simple implementation
 - Subsumes planning of non-robust MDP
- ② Deterministic setting: $\mathcal{O}(\log(1/\epsilon))$ iterations
- Stochastic setting:
 - Convergence up to noise level
 - $\widetilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity
- 4 Evaluation with linear approximation:
 - $\mathcal{O}(1/\epsilon^2)$ sample complexity

Summary

- **1** RPMD for robust MDP with (s, a)-rectangular ambiguity
 - Simple implementation
 - Subsumes planning of non-robust MDP
- 2 Deterministic setting: $\mathcal{O}(\log(1/\epsilon))$ iterations
- Stochastic setting:
 - Convergence up to noise level
 - \circ $\widetilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity
- Evaluation with linear approximation:
 - $\mathcal{O}(1/\epsilon^2)$ sample complexity
- Opential directions:
 - Sample limit of policy gradients for robust MDP
 - dependence on the effective horizon (lower/upper bounds)
 - s- and r-rectangular ambiguity sets

Conclusion

Summary

- **1** RPMD for robust MDP with (s, a)-rectangular ambiguity
 - Simple implementation
 - Subsumes planning of non-robust MDP
- **2** Deterministic setting: $\mathcal{O}(\log(1/\epsilon))$ iterations
- Stochastic setting:
 - Convergence up to noise level
 - \circ $\widetilde{\mathcal{O}}(1/\epsilon^2)$ sample complexity
- Evaluation with linear approximation:
 - $\mathcal{O}(1/\epsilon^2)$ sample complexity
- Opential directions:
 - Sample limit of policy gradients for robust MDP
 - dependence on the effective horizon (lower/upper bounds)
 - s- and r-rectangular ambiguity sets

Reference

- Li, Y., Lan, G, & Zhao, T. (2022). First-order policy optimization for robust Markov decision process. arXiv preprint arXiv:2209.10579.
- Li, Y., & Lan, G. (2023). First-order policy optimization for robust policy evaluation. arXiv preprint arXiv:2307.15890.