A Novel Catalyst Scheme for Stochastic Minimax Optimization

Yan Li

Georgia Institute of Technology

Joint work with George Lan

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Minimax Optimization

Problem of interest

$$\min_{x \in X} \left\{ f(x) \coloneqq \max_{y \in Y} F(x, y) \right\}$$

- Many applications: machine learning (GAN, adversarial training); planning (robust MDPs, Markov games);
- Basic assumptions we will make:
 - If μ_p strongly convex in x; μ_d strongly concave in y;
 - 2 ∇F is *L*-Lipschitz
 - **()** We focus in this talk that $\mu_d, \mu_p > 0$, and WLOG $\mu_d \ge \mu_p$.

Catalyst: Convex Optimization

Catalyst: Minimax Optimization 0000000

A Brief Review of Existing Development

▷ Many ways to solve this problem

• Variational inequality (VI) based methods (Kotsalis et al., '20; Zhang et al., '23; many others): solve VI associated with the optimality condition

$$\langle \nabla_x F(x^*), x - x^* \rangle - \langle \nabla_y F(y^*), y - y^* \rangle \ge 0$$

() Not optimal in the deterministic setting when $\mu_p \neq \mu_d$: $\mathcal{O}(L/\min{\{\mu_p, \mu_d\}}\log(1/\epsilon))$

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

A Brief Review of Existing Development

▷ Many ways to solve this problem

Variational inequality (VI) based methods (Kotsalis et al., '20; Zhang et al., '23; many others): solve VI associated with the optimality condition

$$\langle \nabla_x F(x^*), x - x^* \rangle - \langle \nabla_y F(y^*), y - y^* \rangle \ge 0$$

- **()** Not optimal in the deterministic setting when $\mu_p \neq \mu_d$: $\mathcal{O}(L/\min{\{\mu_p, \mu_d\}}\log(1/\epsilon))$
- Primal-based methods: apply approximate proximal point framework
 (Near) Optimal complexity in the deterministic setting (Lin et al. '20):

$$\widetilde{\mathcal{O}}(L/\sqrt{\mu_p \mu_d} \log(1/\epsilon))$$

Stochastic setting: seemingly no easy extension

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

A Brief Review of Existing Development

▷ Many ways to solve this problem

Variational inequality (VI) based methods (Kotsalis et al., '20; Zhang et al., '23; many others): solve VI associated with the optimality condition

$$\langle \nabla_x F(x^*), x - x^* \rangle - \langle \nabla_y F(y^*), y - y^* \rangle \ge 0$$

- **()** Not optimal in the deterministic setting when $\mu_p \neq \mu_d$: $\mathcal{O}(L/\min{\{\mu_p, \mu_d\}}\log(1/\epsilon))$
- Primal-based methods: apply approximate proximal point framework
 (Near) Optimal complexity in the deterministic setting (Lin et al. '20):

$$\widetilde{\mathcal{O}}(L/\sqrt{\mu_p \mu_d} \log(1/\epsilon))$$

Stochastic setting: seemingly no easy extension

• Can we design methods with optimal complexities in both deterministic and stochastic settings?

Catalyst: Convex Optimization

Catalyst: Minimax Optimization 0000000

Accelerated Proximal Point Method

Algorithm Accelerated Proximal Point Method

Input: initial points
$$\overline{x}_0 = \widetilde{x}_0$$

for $k = 1, 2, ..., K$ do
 $\widehat{x}_k = \gamma_k \overline{x}_{k-1} + (1 - \gamma_k) x_{k-1}.$
 $x_k = \min_{x \in X} f(x) + \frac{\beta_k}{2} ||x - \widehat{x}_k||^2$
 $\overline{x}_k = \frac{1}{\alpha_k \gamma_k + \mu(1 - \gamma_k)} [\beta_k x_k + (\mu_p - \beta_k)(1 - \gamma_k) x_{k-1}].$

end for Output: \tilde{x}_K

• Convergence rate: with $\beta_k = \beta > 0$,

$$f(\tilde{x}_K) - f(x^*) = \mathcal{O}(\frac{\beta}{K^2} ||x^* - \bar{x}_0||^2)$$

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Accelerated Proximal Point Method

Algorithm Accelerated Proximal Point Method

Input: initial points $\overline{x}_0 = \widetilde{x}_0$ for k = 1, 2, ..., K do $\widehat{x}_k = \gamma_k \overline{x}_{k-1} + (1 - \gamma_k) x_{k-1}.$ $x_k = \min_{x \in X} f(x) + \frac{\beta_k}{2} ||x - \widehat{x}_k||^2$ $\overline{x}_k = \frac{1}{\alpha_k \gamma_k + \mu(1 - \gamma_k)} \left[\beta_k x_k + (\mu_p - \beta_k)(1 - \gamma_k) x_{k-1} \right].$

end for Output: \tilde{x}_K

• Convergence rate: with $\beta_k = \beta > 0$,

$$f(\widetilde{x}_K) - f(x^*) = \mathcal{O}(\frac{\beta}{K^2} \|x^* - \bar{x}_0\|^2)$$

 High-level idea of Catalyst: do approximate computation of proximal update using simple non-optimal methods

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Accelerated Proximal Point Method

Algorithm Accelerated Proximal Point Method

Input: initial points $\bar{x}_0 = \tilde{x}_0$ for k = 1, 2, ..., K do $\hat{x}_k = \gamma_k \bar{x}_{k-1} + (1 - \gamma_k) x_{k-1}.$ $x_k = \min_{x \in X} f(x) + \frac{\beta_k}{2} ||x - \hat{x}_k||^2$ $\bar{x}_k = \frac{1}{\alpha_k \gamma_k + \mu(1 - \gamma_k)} [\beta_k x_k + (\mu_p - \beta_k)(1 - \gamma_k) x_{k-1}].$

end for Output: \tilde{x}_K

• Convergence rate: with $\beta_k = \beta > 0$,

$$f(\widetilde{x}_K) - f(x^*) = \mathcal{O}(\frac{\beta}{K^2} \|x^* - \bar{x}_0\|^2)$$

• Essential question: what error condition should we consider to measure "approximate computation"?

Catalyst for Convex Optimization

Catalyst: Convex Optimization

Catalyst: Minimax Optimization 0000000

Catalyst for Convex Optimization

▷ **Problem of interest:** $\min_{x \in X} f(x)$, f is μ -strongly-convex and L-smooth

Algorithm Catalyst(A): catalyst scheme for convex optimization

Input: initial points $\overline{x}_0 = \widetilde{x}_0$, to-be-catalyzed method \mathcal{A} . for k = 1, 2, ..., K do $\widehat{x}_k = \gamma_k \overline{x}_{k-1} + (1 - \gamma_k) \widetilde{x}_{k-1}$. $(\widetilde{x}_k, x_k) = \mathcal{A}(\phi_k, \widehat{x}_k)$ $\overline{x}_k = \frac{1}{\alpha_k \gamma_k + \mu(1 - \gamma_k)} [\alpha_k x_k + (\mu - \alpha_k)(1 - \gamma_k) \widetilde{x}_{k-1}].$ end for

Output: \widetilde{x}_K

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Convex Optimization

▷ **Problem of interest:** $\min_{x \in X} f(x)$, f is µ-strongly-convex and L-smooth

Algorithm Catalyst(A): catalyst scheme for convex optimization

Input: initial points $\overline{x}_0 = \widetilde{x}_0$, to-be-catalyzed method \mathcal{A} . for k = 1, 2, ..., K do $\widehat{x}_k = \gamma_k \overline{x}_{k-1} + (1 - \gamma_k) \widetilde{x}_{k-1}$. $(\widetilde{x}_k, x_k) = \mathcal{A}(\phi_k, \widehat{x}_k)$ $\overline{x}_k = \frac{1}{\alpha_k \gamma_k + \mu(1 - \gamma_k)} [\alpha_k x_k + (\mu - \alpha_k)(1 - \gamma_k) \widetilde{x}_{k-1}].$

end for Output: \tilde{x}_K

φ_k: subproblem of proximal step: φ_k(x) = f(x) + β/2 ||x - x̂_k||²
 A(φ_k, x̂_k): minimize φ_k using A (can be stochastic) initialized from x̂_k
 Error condition:

$$\mathbb{E}[\phi_k(\widetilde{x}_k) - \phi_k(\widetilde{x}) + \frac{\alpha_k}{2} \|\widetilde{x} - x_k\|^2] \le \frac{\varepsilon_k}{2} \|\widetilde{x} - \widehat{x}_k\|^2 + \delta_k, \ \forall \widetilde{x} \in X,$$

• (α_k, ϵ_k) will depend both on β_k and how long we run \mathcal{A} . Note that α_k is required for running Catalyst.

Catalyst: Convex Optimization

Catalyst: Minimax Optimization 0000000

Catalyst for Convex Optimization

Basic recursion

$$\mathbb{E}[f(\tilde{x}_{k}) - f(x) + \frac{\alpha_{k}\gamma_{k}^{2} + \gamma_{k}(1 - \gamma_{k})\mu}{2} \|x - \bar{x}_{k}\|^{2}]$$

$$\leq (1 - \gamma_{k})[f(\tilde{x}_{k-1}) - f(x)] + \frac{(\beta_{k} + \varepsilon_{k})\gamma_{k}^{2}}{2} \|x - \bar{x}_{k-1}\|^{2} + \delta_{k}$$

0

Lemma

Suppose $\mu = 0$. Run Catalyst(A) with

$$\gamma_k = \frac{2}{k+1}, \ \beta_k = \frac{(k+1)L}{k}.$$

In addition, suppose $\{\alpha_k\}$ is chosen such that there exists $\{(\varepsilon_k, \delta_k)\}$ certifying error condition with

$$\alpha_k = \beta_k (1 + \varepsilon), \ \varepsilon_k = \beta_k \varepsilon, \ \varepsilon \le 1,$$
$$\delta_k \le \delta.$$

Then we have

$$\mathbb{E}[f(\tilde{x}_{K}) - f(x^{*})] \le \frac{4L}{K^{2}} \|x^{*} - \bar{x}_{0}\|^{2} + 2K\delta.$$

Yan Li — A Novel Catalyst Scheme for Stochastic Minimax Optimization

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyzing SGD

What method to be catalyzed? stochastic gradient descent

Algorithm SGD $(\phi_k; \hat{x}_k)$: SGD for solving ϕ_k , initialized at \hat{x}_k

Input: stepsizes $\{\eta_t\}$, total number of steps n > 0for t = 1, 2, ..., T do Form $g_{t-1} = \nabla f(u_{t-1}; \xi_{t-1}) + \beta_k(u - \hat{x}_k)$. $u_t = \operatorname{argmin}_{w \in X} \langle g_{t-1}, u \rangle + \frac{1}{2\eta_t} ||u - u_{t-1}||^2$. end for Compute \overline{u}_T = proper ergodic mean of $\{u_t\}$ Output: (\overline{u}_T, u_T) .

 \triangleright SGD satisfies error condition, with $(\alpha_k, \varepsilon_k)$ depending on β_k and T.

Proposition

Let
$$(\widetilde{x}_k, x_k)$$
 be the output of $\mathrm{SGD}(\phi_k; \widehat{x}_k)$, then

$$\mathbb{E}\left[\phi_k(\widetilde{x}_k) - \phi_k(u) + \frac{\alpha\mu_{\phi_k}}{2} \|\widetilde{u} - x_k\|^2\right] \le \frac{\varepsilon\mu_{\phi_k}}{2} \|u - \widehat{x}_k\|^2 + \delta, \ \forall u \in X,$$

with $\varepsilon, \alpha, \delta$ depending on T, and $\mu_{\phi_k} = \mu + \beta_k$.

Catalyst: Convex Optimization

Catalyst: Minimax Optimization 0000000

Theorem

Catalyzing SGD

Suppose $\mu = 0$. For any $\epsilon > 0$, run Catalyst(SGD) with parameters

$$K = 4\sqrt{\frac{L\|x^* - \overline{x}_0\|^2}{\epsilon}}, \ \gamma_k = \frac{2}{k+1}, \ \beta_k = \frac{(k+1)L}{k}, \ \alpha_k = \frac{\beta_k}{1 - \Lambda_T},$$

where

$$T = 8 + \frac{32\sigma^2 K}{L\epsilon}, \ \Lambda_T = \frac{90}{(T+9)(T+10)}.$$

At iteration k, the proximal step is approximately solved by running $SGD(\phi_k, \hat{x}_k)$ for T steps with stepsize

$$\eta_t = \frac{2}{\beta_k(t+8)}.$$

Then we have $\mathbb{E}[f(\widetilde{x}_K) - f(x^*)] \leq \epsilon$. The number of calls to SFO is bounded by

$$\mathcal{O}\left(\sqrt{\frac{L\|x^* - \overline{x}_0\|^2}{\epsilon}} + \frac{\sigma^2 \|x^* - \overline{x}_0\|^2}{\epsilon^2}\right)$$

Theorem

Suppose $\mu>0.$ Apply restarting strategy to the Catalyst framework. Then to obtain

$$\mathbb{E}[f(\widetilde{x}_K) - f(x^*)] \le \epsilon.$$

The number of calls to SFO is bounded by

$$\mathcal{O}\left(\sqrt{\frac{L}{\mu}}\log_2\left(\frac{f(x_{(0)})-f(x^*)}{\epsilon}\right)+\frac{\sigma^2}{\mu\epsilon}\right).$$

• The complexities are optimal in both deterministic ($\sigma^2 = 0$) and stochastic ($\sigma^2 > 0$) settings, for both convex and strongly-convex objectives.

Catalyst for Minimax Optimization

Yan Li — A Novel Catalyst Scheme for Stochastic Minimax Optimization

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

Denote $z = (x, y) \in X \times Y$.

Algorithm A minimax catalyst scheme

Input: initial points
$$\bar{z}_0 = \tilde{z}_0 = z_0$$

for $k = 1, 2, ..., do$
 $\widehat{x}_k = \gamma_k \bar{x}_{k-1} + (1 - \gamma_k) \tilde{x}_{k-1}.$
 $(\widetilde{z}_k, z_k) = \mathcal{A}(\Phi_k, (\widehat{x}_k, y_{k-1}))$
 $\bar{x}_k = \frac{1}{\alpha_k \gamma_k + \mu_p (1 - \gamma_k)} [\alpha_k x_k + (\mu_p - \alpha_k)(1 - \gamma_k) \tilde{x}_{k-1}].$

end for

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

Denote $z = (x, y) \in X \times Y$.

Algorithm A minimax catalyst scheme

Input: initial points
$$\bar{z}_0 = \tilde{z}_0 = z_0$$

for $k = 1, 2, ..., do$
 $\widehat{x}_k = \gamma_k \bar{x}_{k-1} + (1 - \gamma_k) \widetilde{x}_{k-1}.$
 $(\widetilde{z}_k, z_k) = \mathcal{A}(\Phi_k, (\widehat{x}_k, y_{k-1}))$
 $\bar{x}_k = \frac{1}{\alpha_k \gamma_k + \mu_p (1 - \gamma_k)} [\alpha_k x_k + (\mu_p - \alpha_k)(1 - \gamma_k) \widetilde{x}_{k-1}].$

end for

- The minimax Catalyst scheme looks almost identical to that of convex optimization
- $\mathcal{A}(\Phi_k, (\hat{x}_k, y_{k-1})): \min_{x \in X} \max_{y \in Y} \Phi_k(x, y) := F(x, y) + \frac{\beta_k}{2} ||x \hat{x}_k||^2$ initialized at (\hat{x}_k, y_{k-1}) .
- Error condition:

$$\mathbb{E}\left[\Phi_k(\widetilde{x}_k,\widetilde{y}) - \Phi_k(\widetilde{x},\widetilde{y}_k) + \frac{\alpha_k}{2} \|\widetilde{x} - x_k\|^2 + \frac{\alpha_k}{2} \|\widetilde{y} - y_k\|^2\right]$$
$$\leq \mathbb{E}\left[\frac{\varepsilon'_k}{2} \|\widetilde{x} - \widehat{x}_k\|^2 + \frac{\varepsilon_k}{2} \|\widetilde{y} - y_{k-1}\|^2\right] + \delta_k$$

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

▷ Basic recursion

$$\begin{pmatrix} 1 - \frac{4\varepsilon_k}{\mu_d} \end{pmatrix} \mathbb{E}\left[f(\tilde{x}_k) - f(x^*)\right] + \frac{\alpha_k \gamma_k^2 + \gamma_k (1 - \gamma_k) \mu_p}{2} \mathbb{E}\left[\|x^* - \bar{x}_k\|^2\right] + \frac{\alpha_k}{2} \mathbb{E}\left[\|\tilde{y}_k^* - y_k\|\right]^2 \\ \leq \left(1 - \gamma_k + \frac{4\varepsilon_k}{\mu_d}\right) \mathbb{E}\left[f(\tilde{x}_{k-1}) - f(x^*)\right] + \frac{(\beta_k + \varepsilon'_k) \gamma_k^2}{2} \mathbb{E}\left[\|x^* - \bar{x}_{k-1}\|^2\right] \\ + \varepsilon_k \mathbb{E}\left[\|\tilde{y}_{k-1}^* - y_{k-1}\|^2\right] + \delta_k.$$

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

Basic recursion

$$\begin{pmatrix} 1 - \frac{4\varepsilon_k}{\mu_d} \end{pmatrix} \mathbb{E}\left[f(\widetilde{x}_k) - f(x^*)\right] + \frac{\alpha_k \gamma_k^2 + \gamma_k (1 - \gamma_k) \mu_P}{2} \mathbb{E}\left[\|x^* - \overline{x}_k\|^2\right] + \frac{\alpha_k}{2} \mathbb{E}\left[\|\widetilde{y}_k^* - y_k\|\right]^2 \\ \leq \left(1 - \gamma_k + \frac{4\varepsilon_k}{\mu_d}\right) \mathbb{E}\left[f(\widetilde{x}_{k-1}) - f(x^*)\right] + \frac{(\beta_k + \varepsilon'_k) \gamma_k^2}{2} \mathbb{E}\left[\|x^* - \overline{x}_{k-1}\|^2\right] \\ + \varepsilon_k \mathbb{E}\left[\|\widetilde{y}_{k-1}^* - y_{k-1}\|^2\right] + \delta_k.$$

Lemma

Fix total iterations $K \ge 1$ a priori. Choose

$$\gamma_k = \frac{2}{k+1}, \ \beta_k = \frac{\mu_d(k+1)}{4(k+2)}.$$

In addition, suppose α_k is chosen such that there exists ε_k certifying error condition with

$$\alpha_k = \beta_k (1 + \varepsilon'), \ \varepsilon'_k = \beta_k \varepsilon', \ \varepsilon_k = \beta_k \varepsilon, \tag{3.1}$$

$$\delta_k \le \delta, \tag{3.2}$$

for some $\delta > 0$ and $\varepsilon \le \min\left\{\frac{1}{12}, \frac{1}{(K+1)(K+2)}, \frac{\|x^* - \tilde{x}_0\|^2}{2[f(\tilde{x}_0) - f(x^*)]}\right\}, \ \varepsilon' \le 1$. Then $\mathbb{E}\left[f(\tilde{x}_K) - f(x^*)\right] \le \frac{24D_0\mu_d}{K^2} + 64K\delta, \ D_0 = \|x^* - \tilde{x}_0\|^2 + \|\tilde{y}_0^* - y_0\|^2.$

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

▷ What methods do we catalyze? The solution of the to-be-catalyzed method needs to certify the error condition.

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

▷ What methods do we catalyze? The solution of the to-be-catalyzed method needs to certify the error condition.

Algorithm SEG $(H; z_0)$: extragradient for $\min_{x \in X} \max_{y \in Y} H(x, y)$

Input: stepsizes $\{\eta_t\}$, total number of steps n > 0, initial point $z_0 \in Z$ for t = 0, 1, ..., T-1 do Define $G(z, \xi) = [\nabla_x H(z; \xi); -\nabla_y H(z, \xi)]$. Sample $\xi_t, \hat{\xi}_t$, and update $\hat{z}_t = \operatorname*{argmin}_{z \in Z} \eta_t \langle G(z_t, \xi_t), z \rangle + \frac{1}{2} ||z - z_t||^2;$ $z_{t+1} = \operatorname*{argmin}_{z \in Z} \eta_t \left[\langle G(\hat{z}_t, \hat{\xi}_t), z \rangle + \frac{\mu}{2} ||z - \hat{z}_t||^2 \right] + \frac{1}{2} ||z - z_t||^2.$

end for

Construct \overline{z}_T = proper ergodic mean of $\{z_t\}$. **Output:** (\overline{z}_T, z_T) .

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

Lemma

Suppose

$$L\eta_t \le 1/2, \ t \ge 0.$$
 (3.3)

Then for any $T \ge 1$, we have

$$\mathbb{E}\left[F(\overline{x}_T, y) - F(x, \overline{y}_T) + \frac{\mu\Lambda_T}{2(\Lambda_T - \Lambda_0)} \|z - z_T\|^2\right]$$

$$\leq \frac{\mu\Lambda_0}{2(\Lambda_T - \Lambda_0)} \|z - z_0\|^2 + \frac{8\mu\sigma^2}{\Lambda_T - \Lambda_0} \sum_{t=0}^{T-1} \eta_t^2 \Lambda_t,$$

where

$$\Lambda_t = \begin{cases} 1, & t = 0; \\ (1 + \mu \eta_{t-1}) \Lambda_{t-1}, & t \ge 1. \end{cases}$$

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

Theorem

Suppose $\mu_p = 0, \mu_d > 0$. For any $\epsilon > 0$, choose total number of iterations

$$K \ge \sqrt{\frac{24[2\mu_d \|x^* - \tilde{x}_0\|^2 + \mu_d \|\tilde{y}_0^* - y_0\|^2]}{\epsilon}},$$

Choose $\{(\gamma_k, \beta_k, \alpha_k)\}$ properly. In addition, at the *k*-th iteration of the catalyst scheme, run SEG procedure for a total of *T* steps with proper stepsizes $\{\eta_t\}$ and *T*. Then we obtain

$$\mathbb{E}\left[f(\widetilde{x}_K) - f(x^*)\right] \le \epsilon.$$

The total number of calls to SFO can be bounded by

$$\widetilde{\mathcal{O}}\left(\frac{LD_0}{\sqrt{\mu_d\epsilon}} + \frac{\sigma^2 D_0}{\epsilon^2}\right),\,$$

where $D_0 = \|x^* - \widetilde{x}_0\|^2 + \|\widetilde{y}_0^* - y_0\|^2$.

Catalyst: Convex Optimization

Catalyst: Minimax Optimization

Catalyst for Minimax Optimization

Theorem

Suppose $\mu_d \ge \mu_p > 0$. Apply the restarting strategy to the Catalyst scheme. Then to obtain

$$\mathbb{E}\left[f(\widetilde{x}_{(e)}) - f(x^*)\right] \le \epsilon.$$
(3.4)

The total number of calls to SFO can be bounded by

$$\begin{split} \widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{\mu_d \mu_p}} \log_2\left(\frac{\Delta_0}{\epsilon}\right) + \frac{\sigma^2}{\mu_p \epsilon}\right),\\ \text{where } \Delta_0 &= f(\widetilde{x}_{(0)}) - f(x^*) + \frac{\mu_d}{12} \|\widetilde{y}_{(0)}^* - y_{(0)}\|^2. \end{split}$$

Optimal complexities in both deterministic and stochastic setting.