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Minimax Optimization

. Problem of interest

min
x∈X

{
f(x) := max

y∈Y
F (x, y)

}
Many applications: machine learning (GAN, adversarial training); planning
(robust MDPs, Markov games);

Basic assumptions we will make:
1 µp strongly convex in x; µd strongly concave in y;
2 ∇F is L-Lipschitz
3 We focus in this talk that µd, µp > 0, and WLOG µd ≥ µp.
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A Brief Review of Existing Development

. Many ways to solve this problem

Variational inequality (VI) based methods (Kotsalis et al., ’20; Zhang et
al., ’23; many others): solve VI associated with the optimality condition

〈∇xF (x∗), x− x∗〉 − 〈∇yF (y∗), y − y∗〉 ≥ 0

1 Not optimal in the deterministic setting when µp 6= µd:
O(L/min {µp, µd} log(1/ε))

Primal-based methods: apply approximate proximal point framework
1 (Near) Optimal complexity in the deterministic setting (Lin et al. ’20):

Õ(L/
√
µpµd log(1/ε))

2 Stochastic setting: seemingly no easy extension

Can we design methods with optimal complexities in both deterministic
and stochastic settings?
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Accelerated Proximal Point Method

Algorithm Accelerated Proximal Point Method

Input: initial points x0 = x̃0

for k = 1, 2, . . . ,K do

x̂k = γkx̄k−1 + (1− γk)xk−1.

xk = min
x∈X

f(x) + βk
2
‖x− x̂k‖2

x̄k = 1
αkγk+µ(1−γk)

[βkxk + (µp − βk)(1− γk)xk−1] .

end for
Output: x̃K

Convergence rate: with βk = β > 0,

f(x̃K)− f(x∗) = O( β
K2 ‖x∗ − x̄0‖2)

High-level idea of Catalyst: do approximate computation of proximal
update using simple non-optimal methods
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Accelerated Proximal Point Method

Algorithm Accelerated Proximal Point Method

Input: initial points x0 = x̃0
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x̄k = 1
αkγk+µ(1−γk)
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end for
Output: x̃K

Convergence rate: with βk = β > 0,

f(x̃K)− f(x∗) = O( β
K2 ‖x∗ − x̄0‖2)

Essential question: what error condition should we consider to measure
“approximate computation”?
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Catalyst for Convex Optimization
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Catalyst for Convex Optimization

. Problem of interest: minx∈X f(x), f is µ-strongly-convex and L-smooth

Algorithm Catalyst(A): catalyst scheme for convex optimization

Input: initial points x0 = x̃0, to-be-catalyzed method A.
for k = 1, 2, . . . ,K do

x̂k = γkx̄k−1 + (1− γk)x̃k−1.

(x̃k, xk) = A(φk, x̂k)

x̄k = 1
αkγk+µ(1−γk)

[αkxk + (µ− αk)(1− γk)x̃k−1] .

end for
Output: x̃K

1 φk: subproblem of proximal step: φk(x) = f(x) + βk
2
‖x− x̂k‖2

2 A(φk, x̂k): minimize φk using A (can be stochastic) initialized from x̂k
3 Error condition:

E[φk(x̃k)− φk(x̃) + αk
2
‖x̃− xk‖2] ≤ εk

2
‖x̃− x̂k‖2 + δk, ∀x̃ ∈ X,

(αk, εk) will depend both on βk and how long we run A. Note that αk is
required for running Catalyst.
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Catalyst for Convex Optimization

. Basic recursion
E[f(x̃k)− f(x) +

αkγ
2
k+γk(1−γk)µ

2
‖x− x̄k‖2]

≤(1− γk)[f(x̃k−1)− f(x)] +
(βk+εk)γ2k

2
‖x− x̄k−1‖2 + δk.

Lemma

Suppose µ = 0. Run Catalyst(A) with

γk = 2
k+1

, βk = (k+1)L
k

.

In addition, suppose {αk} is chosen such that there exists {(εk, δk)} certifying
error condition with

αk = βk(1 + ε), εk = βkε, ε ≤ 1,

δk ≤ δ.

Then we have

E[f(x̃K)− f(x∗)] ≤ 4L
K2 ‖x∗ − x̄0‖2 + 2Kδ.

Yan Li — A Novel Catalyst Scheme for Stochastic Minimax Optimization 9/19



Minimax Optimization and Proximal Point Catalyst: Convex Optimization Catalyst: Minimax Optimization

Catalyzing SGD

. What method to be catalyzed? stochastic gradient descent

Algorithm SGD(φk; x̂k): SGD for solving φk, initialized at x̂k

Input: stepsizes {ηt}, total number of steps n > 0
for t = 1, 2, . . . , T do

Form gt−1 = ∇f(ut−1; ξt−1) + βk(u− x̂k).
ut = argminw∈X 〈gt−1, u〉+ 1

2ηt
‖u− ut−1‖2.

end for
Compute uT = proper ergodic mean of {ut}
Output: (uT , uT ).

. SGD satisfies error condition, with (αk, εk) depending on βk and T .

Proposition

Let (x̃k, xk) be the output of SGD(φk; x̂k), then

E
[
φk(x̃k)− φk(u) +

αµφk
2
‖ũ− xk‖2

]
≤ εµφk

2
‖u− x̂k‖2 + δ, ∀u ∈ X,

with ε, α, δ depending on T , and µφk = µ+ βk.
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Catalyzing SGD

Theorem

Suppose µ = 0. For any ε > 0, run Catalyst(SGD) with parameters

K = 4

√
L‖x∗−x0‖2

ε
, γk = 2

k+1
, βk = (k+1)L

k
, αk = βk

1−ΛT
,

where

T = 8 + 32σ2K
Lε

, ΛT = 90
(T+9)(T+10)

.

At iteration k, the proximal step is approximately solved by running
SGD(φk, x̂k) for T steps with stepsize

ηt = 2
βk(t+8)

.

Then we have E[f(x̃K)− f(x∗)] ≤ ε. The number of calls to SFO is bounded by

O
(√

L‖x∗−x0‖2
ε

+ σ2‖x∗−x0‖2
ε2

)
.
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Catalyzing SGD

Theorem

Suppose µ > 0. Apply restarting strategy to the Catalyst framework. Then to
obtain

E[f(x̃K)− f(x∗)] ≤ ε.

The number of calls to SFO is bounded by

O
(√

L
µ

log2

(
f(x(0))−f(x∗)

ε

)
+ σ2

µε

)
.

The complexities are optimal in both deterministic (σ2 = 0) and stochastic
(σ2 > 0) settings, for both convex and strongly-convex objectives.
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Catalyst for Minimax Optimization
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Catalyst for Minimax Optimization

Denote z = (x, y) ∈ X × Y .

Algorithm A minimax catalyst scheme

Input: initial points z̄0 = z̃0 = z0

for k = 1, 2, . . . , do

x̂k = γkx̄k−1 + (1− γk)x̃k−1.

(z̃k, zk) = A(Φk, (x̂k, yk−1))

x̄k = 1
αkγk+µp(1−γk)

[αkxk + (µp − αk)(1− γk)x̃k−1] .

end for

The minimax Catalyst scheme looks almost identical to that of convex
optimization

A(Φk, (x̂k, yk−1)): minx∈X maxy∈Y Φk(x, y) := F (x, y) + βk
2
‖x− x̂k‖2

initialized at (x̂k, yk−1).

Error condition:

E
[
Φk(x̃k, ỹ)− Φk(x̃, ỹk) + αk

2
‖x̃− xk‖2 + αk

2
‖ỹ − yk‖2

]
≤E

[
ε′k
2
‖x̃− x̂k‖2 + εk

2
‖ỹ − yk−1‖2

]
+ δk
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Catalyst for Minimax Optimization

. Basic recursion(
1− 4εk

µd

)
E [f(x̃k)− f(x∗)] +

αkγ
2
k+γk(1−γk)µp

2
E
[
‖x∗ − x̄k‖2

]
+ αk

2
E [‖ỹ∗k − yk‖]

2

≤
(

1− γk + 4εk
µd

)
E [f(x̃k−1)− f(x∗)] +

(βk+ε′k)γ2k
2

E
[
‖x∗ − x̄k−1‖2

]
+ εkE

[
‖ỹ∗k−1 − yk−1‖2

]
+ δk.

Lemma

Fix total iterations K ≥ 1 a priori. Choose

γk = 2
k+1

, βk =
µd(k+1)
4(k+2)

.

In addition, suppose αk is chosen such that there exists εk certifying error condition
with

αk = βk(1 + ε′), ε′k = βkε
′, εk = βkε, (3.1)

δk ≤ δ, (3.2)

for some δ > 0 and ε ≤ min
{

1
12
, 1

(K+1)(K+2)
,
‖x∗−x̃0‖2

2[f(x̃0)−f(x∗)]

}
, ε′ ≤ 1. Then

E [f(x̃K)− f(x∗)] ≤ 24D0µd
K2 + 64Kδ, D0 = ‖x∗ − x̃0‖2 + ‖ỹ∗0 − y0‖2.
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‖ỹ∗k−1 − yk−1‖2

]
+ δk.

Lemma

Fix total iterations K ≥ 1 a priori. Choose

γk = 2
k+1

, βk =
µd(k+1)
4(k+2)

.

In addition, suppose αk is chosen such that there exists εk certifying error condition
with

αk = βk(1 + ε′), ε′k = βkε
′, εk = βkε, (3.1)

δk ≤ δ, (3.2)

for some δ > 0 and ε ≤ min
{

1
12
, 1

(K+1)(K+2)
,
‖x∗−x̃0‖2

2[f(x̃0)−f(x∗)]

}
, ε′ ≤ 1. Then

E [f(x̃K)− f(x∗)] ≤ 24D0µd
K2 + 64Kδ, D0 = ‖x∗ − x̃0‖2 + ‖ỹ∗0 − y0‖2.
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Catalyst for Minimax Optimization

. What methods do we catalyze? The solution of the to-be-catalyzed
method needs to certify the error condition.

Algorithm SEG(H; z0): extragradient for minx∈X maxy∈Y H(x, y)

Input: stepsizes {ηt}, total number of steps n > 0, initial point z0 ∈ Z
for t = 0, 1, . . . , T-1 do

Define G(z, ξ) = [∇xH(z; ξ);−∇yH(z, ξ)]. Sample ξt, ξ̂t, and update

ẑt = argmin
z∈Z

ηt 〈G(zt, ξt), z〉+ 1
2
‖z − zt‖2;

zt+1 = argmin
z∈Z

ηt
[〈
G(ẑt, ξ̂t), z

〉
+ µ

2
‖z − ẑt‖2

]
+ 1

2
‖z − zt‖2.

end for
Construct zT = proper ergodic mean of {zt}.
Output: (zT , zT ).
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Catalyst for Minimax Optimization

Lemma

Suppose

Lηt ≤ 1/2, t ≥ 0. (3.3)

Then for any T ≥ 1, we have

E
[
F (xT , y)− F (x, yT ) + µΛT

2(ΛT−Λ0)
‖z − zT ‖2

]
≤ µΛ0

2(ΛT−Λ0)
‖z − z0‖2 + 8µσ2

ΛT−Λ0

∑T−1
t=0 η2

tΛt,

where

Λt =

{
1, t = 0;

(1 + µηt−1)Λt−1, t ≥ 1.
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Catalyst for Minimax Optimization

Theorem

Suppose µp = 0, µd > 0. For any ε > 0, choose total number of iterations

K ≥

√
24[2µd‖x∗−x̃0‖2+µd‖ỹ∗0−y0‖

2]
ε

.

Choose {(γk, βk, αk)} properly. In addition, at the k-th iteration of the catalyst
scheme, run SEG procedure for a total of T steps with proper stepsizes {ηt}
and T . Then we obtain

E [f(x̃K)− f(x∗)] ≤ ε.

The total number of calls to SFO can be bounded by

Õ
(
LD0√
µdε

+ σ2D0
ε2

)
,

where D0 = ‖x∗ − x̃0‖2 + ‖ỹ∗0 − y0‖2.
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Catalyst for Minimax Optimization

Theorem

Suppose µd ≥ µp > 0. Apply the restarting strategy to the Catalyst scheme.
Then to obtain

E
[
f(x̃(e))− f(x∗)

]
≤ ε. (3.4)

The total number of calls to SFO can be bounded by

Õ
(

L√
µdµp

log2

(
∆0
ε

)
+ σ2

µpε

)
,

where ∆0 = f(x̃(0))− f(x∗) + µd
12
‖ỹ∗(0) − y(0)‖2.

Optimal complexities in both deterministic and stochastic setting.
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