
Efficient Multi-agent Reinforcement
Learning and Applications

Presenter: Yan Li

Georgia Institute of Technology

Outline

• Introduction: Lightweight Intro to MARL

• Evaluation: Efficient policy evaluation for decentralized learning

• Scalability: Scaling up MARL for large number of agents

• Robustness: Against environment change and applications to
traffic network control

What is MARL?

Multi-Agent Reinforcement Learning (MARL):

? A sequential decision problem

? A group of agents, each maximizing its own long-term reward

? Agents interacts with each other in a common environment.

Applications:

Autonomous driving, robotics control, fleet control, E-sports.

Key Elements MARL

Typical MARL Problem:

• Number of agents N

• State space: SN (product of each agent’s state space)

• Action space: AN (product of each agent’s action space)

• Reward for each agent: {ri(sN , aN)}Ni=1

• Discount factor: γ ∈ (0, 1)

• Transition kernel: P
{

(sN)′|sN , aN
}

Three Central Quantities

? Policy: {πi}Ni=1: each agent use πi(ai|sN) to decide action.

? Value Functions:

V

joint policy π︷ ︸︸ ︷
π1, . . . , πN
i (sN) = E

{ ∞∑

t=0

γtri(s
N
t , a

N
t)|sN0 = sN

}

Expected reward given starting state and follow joint policy π

? Q-functions:

Q

joint policy π︷ ︸︸ ︷
π1, . . . , πN
i (sN , aN) = E

{ ∞∑

t=0

γtri(s
N
t , a

N
t)|sN0 = sN , aN0 = aN

}

Expected reward given starting state-action pair and follow joint
policy π

What’s so hard about MARL

Self-interest Agents: Each agent maximizes its long-term

discounted reward.

V

joint policy π︷ ︸︸ ︷
π1, . . . , πN
i (sN) = E

{ ∞∑

t=0

γtri(s
N
t , a

N
t)|sN0 = sN

}

? A multi-player game instead of single-objective optimization

? Cooperative if ri’s are the same

Interaction Between Agents:

reward: ri(s
N , ai, a−i) 6= ri(s

N , ai, a
′
−i).

transition: P(s′i|sN , ai, a−i) 6= P(s′i|sN , ai, a′−i).

? Actions of agents affect rewards/dynamics of each other

Mainstream Approach

? Policy Gradients ?

∂

∂θi
Vi(s

N) = EsN∼ρπ ,aN∼π
{
∂

∂θi
log πθi(s

N , aN)Qπi (sN , aN)

}

Each agent can optimize its policy by evaluating expression above
with one stochastic sample

State-action value function Qπi is crucial in shaping learned
policies!

Our Tasks

Given the central role of Q/V functions, we focus on

Part I:

Efficient evaluation of Q/V , for decentralized learning setting.

Part II:

Efficient learning of Q, for many-agent setting.

Part II:

Robust learning of Q, via adversarial regularization.

Part I: Efficient Evaluation

Cooperative MARL: Agents jointly maximize their team reward
r(sN , aN) =

∑N
i=1 ri(s

N , aN)

Local Reward: Local reward ri are only directly accessible by
agent i.

Motivations: privacy concerns, communication constraints

Evaluation Target: value function (same reasoning applies to
Q-function)

V

joint policy π︷ ︸︸ ︷
π1, . . . , πN (sN) = E

{ ∞∑

t=0

γtr(sNt , a
N
t)|sN0 = sN

}

How can we obtain the value function without sharing the reward ?

Formulation of Evaluation

Linear Function Approximation: given feature mapping X(·),

Vθ(s
N) = θ>X(sN)

Bellman Evaluation Operator:

V π(sN) = EaN∼π,(sN)′∼P

{
N∑

i=1

ri(s
N , aN) + γP

{
(sN)′|sN , aN

}
}

Reformulation(centralized):

min
θ

N∑

i=1

‖Aθ − bi‖2

where

A = Es,s′∼ρπX(s)(X(s)− γX(s′))>

bi = Es∼ρπX(s)ri(s), this is only locally accessible

Remark: both A, bi are unknown except through sample.

Decentralized Formulation

Suppose we are given a communication graph G, where two agents
(i, j) are able to communicate with each other if (i, j) ∈ E(G).

min
θ

N∑

i=1

‖Aθi − bi‖2 , s.t. LΘ = 0

where L = LG ⊗ Id, and LG is the graph laplacian of G;
Θ = (θ1, . . . , θN).

LG(i, j) =

0, (i, j) 6∈ E(G)

−1, (i, j) ∈ E(G)

deg(i), i = j

Nice Features:

Linear constraint: equivalent to θ1 = · · · = θN

Objective is both smooth and strongly convex

Decentralized Algorithm

Algorithm 1 Dual Sliding Algorithm

Input: {δt}T−1t=0

Initialize: Λ0 = 0
for t = 0, . . . , T − 1 do

Communication: for i ∈ [N], zti =
∑

j∈E(i) Lijλ
t
j

Update primal variables: for i ∈ [N], θ̂ti = GS(zti , bi, A, δ
t)

Communication: for i ∈ [N], yti =
∑

j∈E(i) Lij θ̂
t
j

Update dual variables: for i ∈ [N], λt+1
i = λti + ηyti

end for

where GS(·) procedure is approximately solving

min
θi

〈
zti , θi

〉
+ ‖Aθi − bi‖2

No reward needs to be shared!

Optimal Efficiency

? Number of sample needed: O
{
1
ε log(1ε)

}
- nearly optimal

? Number of communications needed: O(log(1ε)) - optimal

Communication is crucial - consumes majority computing time

Intuition:

• one-round of communication after one-round of GS(·)
procedure.

• each GS(·) procedure takes O(1ε) number of samples.

First algorithm achieving (nearly) both optimal sample complexity
and communication complexity

Part II: Efficient Learning

Motivation: policy gradient relies on an accurate estimate of
Q-function.

∂

∂θi
Vi(s

N) = EsN∼ρπ ,aN∼π
{
∂

∂θi
log πθi(s

N , aN)Qπi (sN , aN)

}

♠ Curse of Many Agents ♠

sN and aN are concatenation of local states and actions. Learning
Qπi (sN , aN) is hard, the search space grows exponentially with
respect to number of agents.

How large a search space exactly?

Θ
{

(|S||A|)N
}

Cooperative MARL with Homogenous System

Charlie

Rachel

Covington

John

Bruce

Riley

Charlie

Rachel

Covington

John

Bruce

Riley

Exchange John and Rachel

System’s state is unchanged

A MARL system where:

• agents share the same reward

• agents are interchangeable

Examples:
control of unmanned aerial fleet;
tax design on large population.

Formal Description:

r(sN , aN) = r(σ(sN), σ(aN))

P
{

(sN)′|sN , aN
}

= P
{
σ((sN)′)|σ(sN), σ(aN)

}

In short: Only the configuration of the system matters.

Exploiting Homogeneity

Key Observation: The optimal Q-function and its induced policy
is permutation-invariant.

Q∗(sN , aN) = Q(σ(sN), σ(aN))

π∗(sN , aN) = π∗(σ(sN), σ(aN))

Direct Implication:

♠ It suffices to search within the class of permutation-invariant
Q-function and policy ♠

How large is the search space ?

O
{

min{(|S||A|)N , N |S||A|}
}

Search space can be exponentially smaller!

Permutation-invariant Network

Agent 1 Agent 2 Agent N � 1 Agent N

(Output)

(Summary Feature)

s1, a1 sN , aN

NX

i=1

h(si, ai)

G

NX

i=1

h(si, ai)

!

· · · , · · ·· · · , · · ·

DeepSets: A simple yet effective architecture to induce
permutation invariance

F (xN) = G

(
N∑

i=1

h(xi)

)

Interpretation:

? Compute local features by h(·)
? Aggregate

local features before feeding
into the function G(·) that
operates on global information

Experiment Setup

Multi-agent Particle Environment:

? Cooperative navigation: N agents move to cover N fixed
landmarks.

? Cooperative push: N agents work together to push a ball to a
fixed landmark.

? Both tasks reward agents based on distance to landmarks.

Architecture: three-layer Deepsets for to parameterize actor and
critic network.

Training Framework: centralized training, decentralized execution
(one variant of policy gradient).

Experiment Results

0 1 2 3 4 5 6 7
Steps 1e5

650000
600000
550000
500000
450000
400000
350000
300000

Av
er

ag
e

ep
iso

de
 re

wa
rd

MF
GCN
MLP

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Steps 1e6

1600

1550

1500

1450

1400

1350

Av
er

ag
e

ep
iso

de
 re

wa
rd

MF
GCN
MLP
MF-A
VDN

(Left): Cooperative navigation with N = 200 agents.

(Right): Cooperative push with N = 15 agents.

Proposed method (MF) clearly outperforms alternatives!

Part III: Robust Learning for Traffic Control
? Task: let the traffic flows through the network smoothly

? Control Power: ability to control the traffic light at each
intersection

Figure: 2× 2-grid traffic network in SUMO simulator

Traffic Control Setup

Key Elements:

? Individual state space S: incoming queue length, number of
vehicles on incoming lanes, average waiting time, average
delay, current light phase, duration since last phase change

? Joint state space SN :
∏N
i=1 S

? Individual action space A: switch traffic light phase

? Individual action space AN :
∏N
i=1A

? Individual reward ri(si): linear combination of state features

Cooperation is Necessary

Figure: Two traffic lights with inbalanced flow

♠ Selfishness leads to bad equilibrium ♠

♠ Cooperative MARL ♠

♦ optimize global reward r(s): rn =
∑N

n=1 knrn. ♦

Efficient Decomposition of Q-function

Local (individual) Learning :

Ln(θn) = Eπ
{
ytn −Qn(stn, a

t
n)
}2
,

ytn = rtn + γmax
(atn)

′
Qn(stn, (a

t
n)′)

Learning Global Q:

Lglobal(w) =

N∑

n=1

Eπ
{
yt −Qπw(st, at)

}2
,

yt = rt + γQπw(st, (at1)
′, . . . , (atN)′)

Consistency Regularization:

Lreg(θ, w, k) = Eπ

{
Qπ(sn, an)−

N∑

n=1

knQ(sn, an)

}2

♠ Why do we say efficient? ♠
Maximization over AN reduces to A!

Robust Learning

Why Robust Policy?
Small traffic jam; weather condition; road construction; transfer
from simulation to real traffic network

♦ Deployed environment might deviate from training ♦

Intuition for Learning Robust Policy:
Q-function changes smoothly when varying the states sN

Adversarial Regularization:

R(θn) = Eπ max
‖δtn‖≤ε

{
Q(stn, a

t
n)−Q(stn + δtn, a

t
n)
}2

♠ Finding the worse-case traffic pattern change within a
perturbation set ♠

Preliminary Experiments
? Environment (data): SUMO simulator, 6-by-6 grid network.
? Optimizing ...

Lglobal(w) + Lreg(θ, w, k) +

N∑

n=1

Ln(θn) +R(θn)

♠ regularized training shows significant improvement! ♠

Summary

What we have addressed so far:

? Provably Efficient: Optimal algorithms for decentralized policy
evaluation

? Scaling Up: Handling curse of many agents via permutation
invariance

? Robust Learning: Learning robust traffic control policy by
adversarial regularization

Thank you!

	Georgia Tech, April 30, 2020

