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Background and Motivations



Successes of Deep Learning (DL)

Face recognition
– bio-authentification
– security

Natural language processing
– machine translation
– machine understanding
– text generation

Planning
– autonomous driving
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Deep Learning for Classification

Given n observations {xi, yi}ni=1, where xi ∈ Rd and
yi ∈ {1, 2, ...,K}, we train a classifier f(·, θ) by

θ̂ = arg min
θ

1

n

n∑

i=1

`(f(xi, θ), yi),

where `(·) is a proper loss function for classification.

Handwritten digits from the MNIST dataset.
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Neural Networks with One Hidden Layer

When there are more 64 neurons, the number of parameters in the
neural network (≥ 784× 64 + 64× 10 = 50, 816) is already larger
than the training sample size (50, 000).
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Benign Overfitting

Neural networks can interpolate data and achieve a zero training
error, but can still generalize well.
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Figure 3: Experiments on global minima with poor generalization. For each experiment, a VGG network is
trained on union of a subset of CIFAR10 dataset with size 10000 containing samples with true labels and another
subset of CIFAR10 datasets with varying size containing random labels. The learned networks are all global
minima for the objective function on the subset with true labels. The left plot indicates the training and test
errors based on the size of the set with random labels. The plot in the middle shows change in different measures
based on the size of the set with random labels. The plot on the right indicates the relationship between expected
sharpness and KL in PAC-bayes for each of the experiments. Measures are calculated as explained in Figures 1
and 2.

#hidden units
8 32 128 512 2K 8K

er
ro

r

0

0.02

0.04

0.06

0.08
training
test

#hidden units
32 128 512 2K 8K

m
ea

su
re

0

0.2

0.4

0.6

0.8

1
`2 norm
spectral norm
path-`1 norm
path-`2 norm
sharpness

KL #106
0 1 2ex

p
ec

te
d

sh
a
rp

n
es

s

0
0.05
0.1
0.15
0.2
0.25
0.3

KL #106
0 1 2ex

p
ec

te
d

sh
a
rp

n
es

s

0
0.05
0.1
0.15
0.2
0.25
0.3

32
128
512
2048

Figure 4: The generalization of two layer perceptron trained on MNIST dataset with varying number of hidden
units. The left plot indicates the training and test errors. The test error decreases as the size increases. The middle
plot shows different measures for each of the trained networks. The plot on the right indicates the relationship
between expected sharpness and KL in PAC-Bayes for each of the experiments. Measures are calculated as
explained in Figures 1 and 2.

measures decrease for larger networks up to 128 hidden units. For networks with more hidden units,
`2 norm and `1-path norm increase with the size of the network. The middle panel suggest that
`2-path norm can provide some explanation for this phenomenon. However, as we discussed in
Section 2, the actual complexity measure based on `2-path norm also depends on the number of
hidden units and taking this into account indicates that the measure based on `2-path norm cannot
explain this phenomenon. This is also the case for the margin based measure that depends on the
spectral norm. In subsection 2.3 we discussed another complexity measure that also depends the
spectral norm through Lipschitz continuity or robustness argument. Even though this bound is very
loose, it is monotonic with respect to the spectral norm that is reported in the plots. Unfortunately,
we do observe some increase in spectral norm by increasing number of hidden units beyond 512.
The right panel shows that the joint PAC-Bayes measure decrease for larger networks up to size 128
but fails to explain this generalization behavior for larger networks. This suggests that the measures
looked so far are not sufficient to explain all the generalization phenomenon observed in neural
networks.

4 Bounding Sharpness

So far we have discussed margin based and sharpness based complexity measures to understand
capacity. We have also discussed how sharpness based complexity measures in combination with
norms characterize the generalization behavior under the PAC-Bayes framework. In this section
we study the question of what affects the sharpness of neural networks? For the case of linear
predictors, sharpness only depends on the norm of the predictor. In contrast, for multilayered
networks, interaction between the layers plays a major role and consequently two different networks
with the same norm can have drastically different sharpness values. For example, consider a network

9
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Conventional Wisdom

Bias-Variance Tradeoff: If we control the model complexity by
regularization, we reduce the variance and increase the bias.
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Double Descent and Overparameterization

When the number of parameters exceeds certain interpolation
point, the testing error starts to decrease again!
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More Refined Experiments on MNIST

When we carefully train the neural networks for interpolation,
double decent indeed happens.

Figure 4: Double descent risk curve for fully connected neural network on MNIST.
Training and test risks of network with a single layer of H hidden units, learned on a subset of
MNIST (n = 4 ·103, d = 784, K = 10 classes). The number of parameters is (d+1) ·H +(H +1) ·K.
The interpolation threshold (black dotted line) is observed at n · K.

8
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What actually Happened?

Neural networks are highly flexible and are capable of perfectly
classifying all the training data points, when there are sufficiently
many parameters.

Training neural networks using (stochastic) gradient descent
prefers a smooth decision boundary (Left) to a bumpy one (Right).
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Common Belief: Implicit Bias

There exist many large neural network models, which can perfectly
classify all the training data points.

Open Question: Which model will the algorithm pick?

Conjecture: The (stochastic) gradient descent algorithm tends to
pick a low-complexity model. This is known as implicit
bias/regularization of GD/SGD.

Reality: Large neural networks are usually trained by not only
SGD but also many other tricks, which may also contribute to
generalization.
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Overparameterized Linear Regression (OLR)

Given n observations {xi, yi}ni=1, where xi ∈ Rd, yi ∈ R and
n < d, we train a linear model f(x, θ) = x>θ by

θ̂ = arg min
θ

1

2n

n∑

i=1

(yi − x>θ)2 = arg min
θ

1

2n
‖y −Xθ‖22

︸ ︷︷ ︸
L(θ)

.

There are infinitely many optima:

∂L(θ)

∂θ
= X>Xθ −X>y = 0⇒ θ̂ = (X>X)†X>y + u,

where A† is the pseudo-inverse of A, and u is any vector in Rd
satisfying X>u = 0.
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Gradient Descent for OLR

We initialize at θ0. At the t-th iteration, Gradient Descent takes

θt = θt−1 − ηtX>(Xθt−1 − y),

where ηt > 0 is the step size.

Remark 1: The iterative increment always stays in the row space
of X denoted by X .

Remark 2: By decomposing

θ0 = ΠX (θ0) + ΠX⊥(θ0),

we can easily show

θt → ΠX⊥(θ0) + (X>X)†X>y.
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Gradient Descent for OLR

When we initialize at θ0 = 0, we can show

θt → (X>X)†X>y.

This is equivalent to finding

θ̂ = arg min
θ
‖θ‖22

subject to L(θ) = 0.

Remark 3: Gradient Descent finds the minimum 2-norm model,
which can interpolate n data points.
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Overparameterized Linear Classification (OLC)

Given n observations {xi, yi}ni=1, where xi ∈ Rd, yi ∈ {−1,+1}
and n < d, we train a linear model f(x, θ) = x>θ by

θ̂ = arg min
θ
L(θ), where L(θ) =

1

n

n∑

i=1

`(yix
>θ),

and `(·) is a properly chosen light-tail loss function.

No finite minimizer: Assume that there are no identical xi’s.
When d > n, the data are linearly separable: There exist infinitely
many θ’s such that

yix
>
i θ > 0 and lim

c→∞
L(cθ) = 0.
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Overparameterized Linear Classification

The scale of θ does not matter in terms of the classification
accuracy: Given a testing data point x̃, we predict its label by

ỹ = sign(x̃>θ).

Recall the support vector machine for linearly separable data.

θ̂SVM = arg min
θ

‖θ‖22

subject to yix
>
i θ ≥ 1, i = 1, 2, ..., n.

This is equivalent to maximizing the normalized margin:

max
θ

min
i
yi〈xi, θ/ ‖θ‖2〉.
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Maximum Margin Classifier

The maximum margin classifier (MMC, i.e., Support Vector
Machine) is essentially the minimum 2-norm model, which can
interpolate the data subject to the minimum margin value 1.
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Gradient Descent for OLC

We initialize at θ0. At the t-th iteration, Gradient Descent takes

θt = θt−1 −
ηt
n

n∑

i=1

`′(yix
>
i θt−1)yixi,

where ηt > 0 is the step size.

Remark 1: Gradient descent will diverge to infinity, as there is no
finite minimizer.

Remark 2: Most of existing optimization theories only consider
the problems with finite minimizers.
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Assumptions and Notations

xi’s are bounded:

‖xi‖2 ≤ 1, i = 1, ..., n

Light tail loss:

`(yix
>
i θ) = exp(−yix>i θ)

Maximum ‖‖2-norm margin:

θ∗ = arg max
‖θ‖2=1

min
i
yix
>
i θ and γ = min

i
yix
>
i θ
∗

X : The subspace spanned by xi’s
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Convergence of Empirical Risk

Theorem (Ji et al. 2019)

Given η ≤ 1 and θ0 = 0, we have

R(θT )− inf
θ
R(θ) = O

(
1

T
+

log2 T

γ2T

)

Remarks:

Allows the data to be not strictly separable (non-separable in
a subspace).

Acceleration is possible by using increasing stepsizes
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Directional Convergence of Parameter

Theorem (Ji et al. 2019)

Given η = 1 and θ0 = 0, we have

1− 〈θ∗, θT / ‖θT ‖2〉 = O
(

log n+ log log T

γ2 log T

)

Remarks:

Note the convergence is really slow!

Acceleration is possible by using increasing stepsize (strictly
separable data)
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Fully Connected Linear Networks

(a) Fully connected network of depth L
�

1 / argmin
8n, ynhxn,�i�1

k�k2 (independent of L)

(b) Convolutional network of depth L

�
1 / first order stationary point of argmin

8n, ynhxn,�i�1

kb�k2/L

(c) Diagonal network of depth L
�

1 / first order stationary point of argmin
8n, ynhxn,�i�1

k�k2/L

Figure 1: Implicit bias of gradient descent for different linear network architectures.

Theorem 1 (Linear fully connected networks). For any depth L, almost all linearly separable
datasets {xn, yn}N

n=1, almost all initializations w(0), and any bounded sequence of step sizes {⌘t}t,
consider the sequence gradient descent iterates w(t) in eq. (7) for minimizing LPfull

(w) in eq. (4)
with exponential loss `(by, y) = exp(�byy) over L–layer fully connected linear networks.

If (a) the iterates w(t) minimize the objective, i.e., LPfull
(w(t)) ! 0, (b) w(t), and consequently

�(t) = Pfull(w
(t)), converge in direction to yield a separator with positive margin, and (c) gradients

with respect to linear predictorsr�L(�(t)) converge in direction, then the limit direction is given by,

�
1

= lim
t!1

Pfull(w
(t))

kPfull(w(t))k =
�⇤
`2

k�⇤
`2k

, where �⇤
`2 := argmin

w
k�k22 s.t. 8n, ynhxn,�i � 1. (8)

For fully connected networks with single output, Theorem 1 shows that there is no effect of depth
on the implicit bias of gradient descent. Regardless of the depth of the network, the asymptotic
classifier is always the hard margin support vector machine classifier, which is also the limit direction
of gradient descent for linear logistic regression with the direct parameterization of � = w.

In contrast, next we show that for convolutional networks we get very different biases. Let us first look
at a 2–layer linear convolutional network, i.e., a network with single convolutional layer followed by
a fully connected final layer.

5

f(x,W) = wLWL−1 · · ·W1x = x>θ,

where θ = wLWL−1 · · ·W1.
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Fully Connected Linear Networks

(a) Fully connected network of depth L
�

1 / argmin
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�
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Figure 1: Implicit bias of gradient descent for different linear network architectures.

Theorem 1 (Linear fully connected networks). For any depth L, almost all linearly separable
datasets {xn, yn}N

n=1, almost all initializations w(0), and any bounded sequence of step sizes {⌘t}t,
consider the sequence gradient descent iterates w(t) in eq. (7) for minimizing LPfull

(w) in eq. (4)
with exponential loss `(by, y) = exp(�byy) over L–layer fully connected linear networks.

If (a) the iterates w(t) minimize the objective, i.e., LPfull
(w(t)) ! 0, (b) w(t), and consequently

�(t) = Pfull(w
(t)), converge in direction to yield a separator with positive margin, and (c) gradients

with respect to linear predictorsr�L(�(t)) converge in direction, then the limit direction is given by,

�
1

= lim
t!1

Pfull(w
(t))

kPfull(w(t))k =
�⇤
`2

k�⇤
`2k

, where �⇤
`2 := argmin

w
k�k22 s.t. 8n, ynhxn,�i � 1. (8)

For fully connected networks with single output, Theorem 1 shows that there is no effect of depth
on the implicit bias of gradient descent. Regardless of the depth of the network, the asymptotic
classifier is always the hard margin support vector machine classifier, which is also the limit direction
of gradient descent for linear logistic regression with the direct parameterization of � = w.

In contrast, next we show that for convolutional networks we get very different biases. Let us first look
at a 2–layer linear convolutional network, i.e., a network with single convolutional layer followed by
a fully connected final layer.

5

Theorem (Gunasekar et al. 2018)

Under some regularity conditions, we have

lim
T→∞

θT
‖θT ‖2

=
θ∗

‖θ∗‖2
,

where

θ∗ = arg min
θ
‖θ‖22 subject to yix

>
i θ ≥ 1, ∀ i = 1, ..., n.
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Fully Connected Linear Networks
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Figure 1: Implicit bias of gradient descent for different linear network architectures.

Theorem 1 (Linear fully connected networks). For any depth L, almost all linearly separable
datasets {xn, yn}N

n=1, almost all initializations w(0), and any bounded sequence of step sizes {⌘t}t,
consider the sequence gradient descent iterates w(t) in eq. (7) for minimizing LPfull

(w) in eq. (4)
with exponential loss `(by, y) = exp(�byy) over L–layer fully connected linear networks.

If (a) the iterates w(t) minimize the objective, i.e., LPfull
(w(t)) ! 0, (b) w(t), and consequently

�(t) = Pfull(w
(t)), converge in direction to yield a separator with positive margin, and (c) gradients

with respect to linear predictorsr�L(�(t)) converge in direction, then the limit direction is given by,

�
1

= lim
t!1

Pfull(w
(t))

kPfull(w(t))k =
�⇤
`2

k�⇤
`2k

, where �⇤
`2 := argmin

w
k�k22 s.t. 8n, ynhxn,�i � 1. (8)

For fully connected networks with single output, Theorem 1 shows that there is no effect of depth
on the implicit bias of gradient descent. Regardless of the depth of the network, the asymptotic
classifier is always the hard margin support vector machine classifier, which is also the limit direction
of gradient descent for linear logistic regression with the direct parameterization of � = w.

In contrast, next we show that for convolutional networks we get very different biases. Let us first look
at a 2–layer linear convolutional network, i.e., a network with single convolutional layer followed by
a fully connected final layer.

5

Theorem (Ji et al. 2019)

Under some regularity conditions, we have

lim
T→∞

‖W j
T ‖2

‖W j
T ‖F

= 1 and lim
T→∞

〈vT , θ∗〉 = 1,

where vT is the first right singular vector of W 1.
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Homogenous Nonlinear Networks

(a) Fully connected network of depth L
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1 / argmin
8n, ynhxn,�i�1

k�k2 (independent of L)

(b) Convolutional network of depth L
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8n, ynhxn,�i�1
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(c) Diagonal network of depth L
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1 / first order stationary point of argmin
8n, ynhxn,�i�1

k�k2/L

Figure 1: Implicit bias of gradient descent for different linear network architectures.

Theorem 1 (Linear fully connected networks). For any depth L, almost all linearly separable
datasets {xn, yn}N

n=1, almost all initializations w(0), and any bounded sequence of step sizes {⌘t}t,
consider the sequence gradient descent iterates w(t) in eq. (7) for minimizing LPfull

(w) in eq. (4)
with exponential loss `(by, y) = exp(�byy) over L–layer fully connected linear networks.

If (a) the iterates w(t) minimize the objective, i.e., LPfull
(w(t)) ! 0, (b) w(t), and consequently

�(t) = Pfull(w
(t)), converge in direction to yield a separator with positive margin, and (c) gradients

with respect to linear predictorsr�L(�(t)) converge in direction, then the limit direction is given by,

�
1

= lim
t!1

Pfull(w
(t))

kPfull(w(t))k =
�⇤
`2

k�⇤
`2k

, where �⇤
`2 := argmin

w
k�k22 s.t. 8n, ynhxn,�i � 1. (8)

For fully connected networks with single output, Theorem 1 shows that there is no effect of depth
on the implicit bias of gradient descent. Regardless of the depth of the network, the asymptotic
classifier is always the hard margin support vector machine classifier, which is also the limit direction
of gradient descent for linear logistic regression with the direct parameterization of � = w.

In contrast, next we show that for convolutional networks we get very different biases. Let us first look
at a 2–layer linear convolutional network, i.e., a network with single convolutional layer followed by
a fully connected final layer.

5

f(x,W) = wLσ(WL−1 · · ·σ(W1x)),

where σ(·) is the homogenous activation satisfying σ(tx) = tσ(x).
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Homogenous Nonlinear Networks
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Figure 1: Implicit bias of gradient descent for different linear network architectures.

Theorem 1 (Linear fully connected networks). For any depth L, almost all linearly separable
datasets {xn, yn}N

n=1, almost all initializations w(0), and any bounded sequence of step sizes {⌘t}t,
consider the sequence gradient descent iterates w(t) in eq. (7) for minimizing LPfull

(w) in eq. (4)
with exponential loss `(by, y) = exp(�byy) over L–layer fully connected linear networks.

If (a) the iterates w(t) minimize the objective, i.e., LPfull
(w(t)) ! 0, (b) w(t), and consequently

�(t) = Pfull(w
(t)), converge in direction to yield a separator with positive margin, and (c) gradients

with respect to linear predictorsr�L(�(t)) converge in direction, then the limit direction is given by,

�
1

= lim
t!1

Pfull(w
(t))

kPfull(w(t))k =
�⇤
`2

k�⇤
`2k

, where �⇤
`2 := argmin

w
k�k22 s.t. 8n, ynhxn,�i � 1. (8)

For fully connected networks with single output, Theorem 1 shows that there is no effect of depth
on the implicit bias of gradient descent. Regardless of the depth of the network, the asymptotic
classifier is always the hard margin support vector machine classifier, which is also the limit direction
of gradient descent for linear logistic regression with the direct parameterization of � = w.

In contrast, next we show that for convolutional networks we get very different biases. Let us first look
at a 2–layer linear convolutional network, i.e., a network with single convolutional layer followed by
a fully connected final layer.

5

Theorem (Lyu et al. 2018)

Under some regularity conditions, we have

lim
T→∞

WT

‖WT ‖2
=
W∗
‖W∗‖2

,

where W∗ is in the vector form and some KKT point to the

following nonconvex optimization problem

W∗ = arg min
W

‖W‖22 subject to yif(xi,W) ≥ 1, ∀ i = 1, ..., n.
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Motivation: Bregman Proximal Point in Applications

An emerging set of algorithms: self-training, self-distillation

A lot of them can be described by Bregman proximal point
algorithm

θt+1 = arg minθ L(θ) + 1/(2ηt)D(θ, θt).

Popular choices of divergence function

DLS(θ, θt) = ED ‖fθ(x)− fθt(x)‖22
DKL(θ, θt) = EDKL (fθ′(x)‖fθ(x))

State-of-art performance in language models and image
classification models.
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The role of divergence?

Question: How does D affect the learned model?

Key observation: divergence D can be data-dependent.

Approach: connecting algorithmic regularization with (potentially
data-dependent) divergence D.
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Linear Separable Classification

Task: Learn a linear classifier for linearly separable data

Learning Objective:

min
θ
L(θ) =

1

n

n∑

i=1

`(yix
>
i θ)

Algorithm (BPPA):

θt+1 = arg minθ L(θ) + 1/(2ηt)Dw(θ, θt).

Remark:

Use tight exponential tail loss (exp/logistic).

No finite minimizer.

Our later results holds also for mirror descent.
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Minimal Assumption

Only assumption: The distance generating function of Bregman
divergence Dw(·, ·) is Lw-smooth and µw-strongly convex w.r.t.
‖·‖-norm.

µw
2

∥∥θ − θ′
∥∥2 ≤ w(θ)− w(θ′)−

〈
∇w(θ′), θ − θ′

〉
︸ ︷︷ ︸

Dw(θ,θ′)

≤ Lw
2

∥∥θ − θ′
∥∥2 .

Remark

Dw can be data-dependent, so does the ‖·‖.
Will provide a concrete example.
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Implicit Regularization of BPPA

Good Conditionedness = Good Seperation:

lim
t→∞

min
i∈[n]

〈
θt
‖θt‖

, yixi

〉
≥
√
µw
Lw

γ‖·‖∗ ,

Interpretation:

u‖·‖∗ = arg max
‖u‖≤1

min
i∈[n]
〈u, yixi〉 , γ‖·‖∗ = max

‖u‖≤1
min
i∈[n]
〈u, yixi〉 .

Remarks:

Lower bound is tight for a class of problems

Works for general norm ‖·‖ instead of `2 norm

Non-asymptotic convergence is still slow O(1/ log t)

Can be accelerated to O(1/
√
t) using increasing stepsizes
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Data-dependent implicit regularization in action

Mixture of Sphere: yi ∼ Bernoulli(1/2), xi ∼ Unif (Syiµ(r)),
where Sz(r) denotes the sphere centered at z with radius r in Rd.

Limited labeled, Abundant unlabeled data: n labeled data
{(xi, yi)}ni=1. m unlabeled data {x̃j}mj=1.

Three divergences:

Data-independent: D(1)(θ, θ′) = ‖θ − θ′‖22
Data-dependent: D(2)(θ, θ′) = (θ − θ′)>Σ̂(θ − θ′)
Data-dependent: D(3)(θ, θ′) = (θ − θ′)>Σ̂−1(θ − θ′)
Σ̂ = 1

m

∑m
j=1 x̃j x̃

>
j
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Data-dependent implicit regularization in action

Visualization of Decision Boundary

Left (D(1)), Middle (D(2)), Right (D(3))

Explanation

All three divergence have conditioned number 1, but with
different norm.

Leads to maximal margin solutions wrt different norms.

D(3) gives the best norm.
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Data-dependent implicit regularization in action
BPPA on Neural Networks: ResNet-18, MobileNetV2,
ShuffleNetV2 on CIFAR-100 dataset.

Divergence matters!
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Blindspots of DL: Adversarial Examples

Deep neural networks are
vulnerable to adversarial
examples (Goodfellow et
al. 2014).

+ =

“Pig” “Airliner”

Clean Example Adversarial Example

Imperceptible
Perturbation

Well-trained
Neural Network

Given model f(·, θ), loss function `(·, ·), data point (x, y), a
(specified) perturbation set B.

x̂ = arg max
x′∈{x}

⊕
B
`
(
f(x′, θ), y

)
.

⊕
denotes direct sum.
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Defend Against Adversarial Examples

Provable Defense:

Discrete optimization: (Tjeng et al. 2017).
– heavy computation, no scalable

Randomized smoothing: (Cohen et al. 2019).

– scalable to ImageNet level dataset.

– hard to defend against `∞ attack: B = {δ : ‖δ‖∞ ≤ ε}.

Summary: Limited practical performance, assumes adversary has
infinite computational power (reasonable?).
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Adversarial Training (AT), (Madry et al 2017)

min
θ
Ladv(θ) =

1

n

n∑

i=1

max
δi∈B

`(f( xi + δi︸ ︷︷ ︸
Adversarial Example:x̂i

; θ), yi).

Robust optimization (Ben-Tal; Nemirovski, 1998)

– non-convex max, non-concave min, no-convergence
guarantees

– solving min problem (approximately) with projected gradient
descent (common practice)

Great empirical performance. Building block for most defense
methods. Matches state-of-art algorithm with early-stopping
(Rice et al. 2020)

Adaptive robustness: defending against stronger attack →
more robust model (Gao et al. 2019).
– gradient descent based adversary (GDAT).

Lack of theoretical guarantees.
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Outline

Address the following question, (tentatively)

Q: Does AT really achieves robustness?

A: Understand AT through its algorithmic implicit bias.
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Road to robustness

Previous results: SVM can be viewed as AT (Xu et al. 2009).
The following are equivalent

min
w,b

max∑n
i=1‖δi‖∗≤c

n∑

i=1

max
[
1− yi(w>(xi + δ) + b), 0

]
(AT)

min
w,b

c ‖w‖+
n∑

i=1

max
[
1− yi(w>(xi + δ) + b), 0

]
(SVM)

robustness and regularization:

non-separable data, finite minimizer

What about separable data? – infinitely many
perfect-accuracy classifiers!
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Question: does the optimization algorithm have any preference

among infinitely solutions for under-determined system? – implicit
bias

Example: Solving under-determined least square:

min
x∈Rd

‖Ax− b‖22 , A ∈ Rn×d, d� n, b ∈ Rn

with gradient descent, initialized at x0 = 0, converges to minimum
`2 norm solution.

– quick proof: xt ∈ span(A>) with GD update, let
x∗ = limt→∞ xt = A>c∗, we have AA>c∗ = b, then
x∗ = A>c∗ = A>(AA>)−1b, the minimum `2 norm solution.
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Training linear classifier with AT

Problem setup: linearly separable data (xi, yi)
n
i=1, tight

exponential tail loss (e.g., logistic/exp loss), `q perturbation:
B = {δ : ‖δ‖q ≤ c}.
Learning robust linear classifier:

min
θ
Ladv(θ) =

1

n

n∑

i=1

max
‖δ‖q≤c

`(yi(xi + δ)>θ).

Observations:

When c < γq, no finite solution, ‖θt‖ → ∞!

When c = 0, standard training, converges in direction to `2
SVM (Soudry et al. 2018).
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Training linear classifier with AT

AT on Separable Data with `q Perturbation
Input: Data points {(xi, yi)}ni=1, perturbation level

c < γq and step sizes {ηt}T−1t=0 .
Init: Set θ0 = 0.
For t = 0 . . . T − 1:

For i = 1 . . . n, δ̂i = arg max‖δi‖q≤c `(yi(xi + δi)
>θt).

Set x̃i = xi + δ̂i, for i = 1 . . . n.
Update θt+1 = θt − (ηt/n) ·∑n

i=1∇`(yix̃iθt).

Questions: Does AT possess implicit bias, and whether it relates
to robustness?
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A Robust SVM

Standard `q-norm SVM.

θ2 (and generally θq) = the optimal `2(`q) margin SVM,

θq = arg max
‖θ‖p=1

min
i=1,...,n

yix
>
i θ, 1/p+ 1/q = 1, p, q ∈ [1,∞].

γq = optimal `q margin (max of RHS).

Robust SVM: adapts to adversary geometry B = {δ : ‖δ‖q ≤ c}

θq,c = arg max
‖θ‖2=1

min
i=1,...,n

min
‖δi‖q≤c

yi(xi + δi)
>θ.

Robustness: θq,c is in the same direction to the solution of

min
θ∈Rd
‖θ‖2 s.t. yix̃

>
i θ ≥ 1 for all ‖x̃i − xi‖q ≤ c,∀i = 1 . . . n.
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A Robust SVM

✓t/k✓tk2

✓1,c

✓2

Minimum mix-norm solution: θq,c is in the same direction to the
solution of (here 1/p+ 1/q = 1)

min
θ∈Rd
‖θ‖2 + η(c) ‖θ‖p s.t. yix

>
i θ ≥ 1,∀i = 1 . . . n.
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GDAT Adapts to Adversary Examples

Theorem (Li et al. 2019)

Let perturbation level c < γq, Then

1−
〈
θt/
∥∥θt
∥∥
2
, θq,c

〉
= O(log n/ log t).

Remarks:

Guaranteed robustness against `q perturbation bounded by c.

Adaptive implicit bias. Converges to the most `2 robust linear
classifier with `q margin at least c.
Special case: q = 2, converge to `2 SVM.

Complementary of well known results on non-separable data:
SVM + AT ⇒ Robust SVM (Xu el al. 2009).
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AT Accelerates Convergence (q = 2)

Theorem (Li et al. 2019)

Let c and number of iterations T satisfy γ2 − c = O
(
log2 T
T

)1/2
,

We have θ2,c = θ2, and

1−
〈
θT /

∥∥θT
∥∥
2
, θ2
〉

= O
(

log T√
T

)
.

Exponential Acceleration by AT!

Corollary: Convergence on clean loss by AT is almost
exponentially faster than GD.

AT: Lclean(θT ) = O
(

exp(−
√
T/ log T )

)

GD: Lclean(θT ) = O (1/T )
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Intuition: We have θ2,c = θ2: implicit bias of GD coincides with
explicit bias of AT!

Key Technical Ingredients:

Projection of θt onto the orthogonal space
M⊥ = {θ : 〈θ, θ2〉 = 0} is bounded for all t ≥ 0.

For projection of θt onto the space M = span(θ2), its
increment satisfies Generalized Perceptron Lemma:〈

θt+1 − θt, θ2
〉
≥ ηLadv(θt)(γ2 − c).

GDAT
M = span(✓2)
M?
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Empirical Study
Linear Classifiers: We generate data with γ2 = 1. We set
c = 0.95. η = 0.1 for GDAT and η = 1 for standard training.
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Empirical Study
Neural Networks: We use MNIST dataset. The width of hidden
layer varies in {64× 64, 128× 128, 256× 256, 512× 512}. We use
`∞ perturbation with perturbation level ε ∈ {0.1, 0.15, 0.20}.
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Additional experimental results: (Xie et al. 2019) show
acceleration effect of AT with practical deep networks.

Summary

AT adapts the classifier to adversary geometry – provably for
linear classifier.

AT with `2 perturbation provides exponential speed-up on
clean loss.

Deep non-linear networks is hard due to notorious non-convexity
(future).
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