Block Policy Mirror Descent

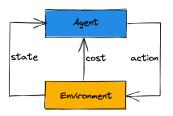
Guanghui (George) Lan, Yan Li, Tuo Zhao

Georgia Institute of Technology

CISS 2022

BPMD - Stochastic Variants 00000000 Numerical Study

Markov decision process



• Planning in $\mathcal{M}(\mathcal{S}, \mathcal{A}, \mathbb{P}, \gamma, c, h)$:

Key elements:

- \mathcal{S} : state space, finite
- \mathcal{A} : action space, finite
- \mathbb{P} : transition kernel
- γ : discount factor
- c,h: costs

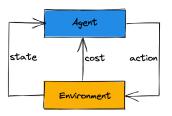
$$\min_{\pi} V^{\pi}(s) \coloneqq \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} \underbrace{(c(s_{t}, a_{t}) + h^{\pi}(s_{t}))}_{\text{policy-dependent cost}} | s_{0} = s]$$

• Regularizer $h^{\pi}(s)$ is μ -strongly convex ($\mu \geq 0$) in $\pi(\cdot|s)$ for each s

$$h^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \log \pi(a|s)$$
 (negative entropy)
$$h^{\pi}(s) = 0$$
 (standard MDP)

BPMD - Stochastic Variants 00000000 Numerical Study

Markov decision process



• Planning in $\mathcal{M}(\mathcal{S}, \mathcal{A}, \mathbb{P}, \gamma, c, h)$:

Key elements:

- \mathcal{S} : state space, finite
- \mathcal{A} : action space, finite
- \mathbb{P} : transition kernel
- γ : discount factor
- c,h: costs

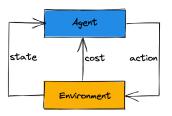
$$\min_{\pi} V^{\pi}(s) \coloneqq \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} \underbrace{(c(s_{t}, a_{t}) + h^{\pi}(s_{t}))}_{\text{policy-dependent cost}} | s_{0} = s]$$

• Regularizer $h^{\pi}(s)$ is μ -strongly convex ($\mu \geq 0$) in $\pi(\cdot|s)$ for each s

$$h^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \log \pi(a|s)$$
 (negative entropy)
$$h^{\pi}(s) = 0$$
 (standard MDP)

BPMD - Stochastic Variants 00000000 Numerical Study

Markov decision process



• Planning in $\mathcal{M}(\mathcal{S}, \mathcal{A}, \mathbb{P}, \gamma, c, h)$:

Key elements:

- \mathcal{S} : state space, finite
- \mathcal{A} : action space, finite
- \mathbb{P} : transition kernel
- γ : discount factor
- c,h: costs

$$\min_{\pi} V^{\pi}(s) \coloneqq \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} \underbrace{\left(c(s_{t}, a_{t}) + h^{\pi}(s_{t})\right)}_{\text{policy-dependent cost}} \middle| s_{0} = s \right]$$

• Regularizer $h^{\pi}(s)$ is μ -strongly convex ($\mu \geq 0$) in $\pi(\cdot|s)$ for each s

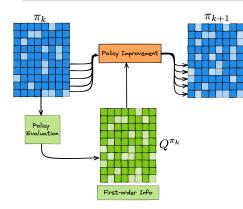
$$\begin{split} h^{\pi}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \log \pi(a|s) & \text{(negative entropy)} \\ h^{\pi}(s) &= 0 & \text{(standard MDP)} \end{split}$$

PMD - Deterministic Variants

BPMD - Stochastic Variants

Numerical Study

A Conceptual Recap on Policy Gradient Methods



• Single-objective:

$$f(\pi) = \sum_{s \in \mathcal{S}} \nu^*(s) V^{\pi}(s)$$

- * nonconvex
- Policy evaluation:
 * matrix inversion
 * TD / simulator
- Policy improvement:
 - \star policy gradient
 - * natural policy gradient

• Q-function table: $Q^{\pi} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$ defined as

 $Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(c(s_{t},a_{t}) + h^{\pi}(s_{t}) \right) \middle| s_{0} = s, a_{0} = a \right]$

Numerical Study

Recent developments on Policy Gradient

- Possibly even earlier ..
- Even-Dar, Kakade, Mansour '09: $\mathcal{O}(1/\sqrt{T})$ regret of NPG
- Agarwal, Kakade, Lee, Mahajan '19: $\mathcal{O}(1/T)$ of NPG
 - technique inspired by Even-Dar, Kakade, Mansour '09
- Cen, Cheng, Chen, Wei, Chi '20: linear convergence of NPG for entropy regularized MDPs
- Lan '21: (approximate) policy mirror descent
 - linear convergence of NPG/PMD for entropy regularized MDPs
 - linear convergence of APMD for standard MDPs
 - linear convergence of stochastic variants and optimal sample complexity
- Khodadadian, Jhunjhunwala, Varma, Maguluri '21: linear convergence of NPG with adaptive stepsize for standard MDPs

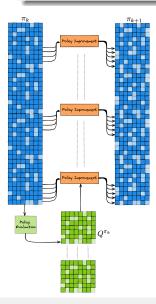
More recently ..

- Li, Lan, Zhao '22: homotopic policy mirror descent
 - linear convergence of standard MDPs, local superlinear convergence
 - last-iterate convergence of the policy
- Xiao '22: linear convergence of NPG/PMD with increasing stepsize

And many more ...

BPMD - Stochastic Variants 00000000 Numerical Study

What can be overlooked?



- Both policy improvement and evaluation need to conducted for every state (*batch PG*)
- Per-iteration computation:
 - Evaluation:

$$\begin{split} \mathcal{O}(\mathrm{MatInv}(|\mathcal{S}|) + |\mathcal{S}| \, |\mathcal{A}|) & (\mathsf{known model}) \\ \mathcal{O}(|\mathcal{S}| \, |\mathcal{A}| \, /\mathrm{err}) & (\mathsf{unknown model}) \end{split}$$

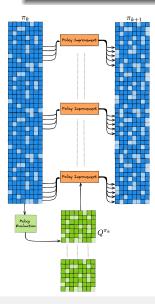
• Improvement: $\mathcal{O}(|\mathcal{S}||\mathcal{A}|)$

♠ Iteration can be very expensive for large state space problem ♠

> Can we design algorithms with cheap iterations, while enjoying similar convergence as batch PG methods?

BPMD - Stochastic Variants 00000000 Numerical Study

What can be overlooked?



- Both policy improvement and evaluation need to conducted for every state (*batch PG*)
- Per-iteration computation:
 - Evaluation:

 $\mathcal{O}(\mathrm{MatInv}(|\mathcal{S}|) + |\mathcal{S}| |\mathcal{A}|)$ (known model) $\mathcal{O}(|\mathcal{S}| |\mathcal{A}| / \mathrm{err})$ (unknown model)

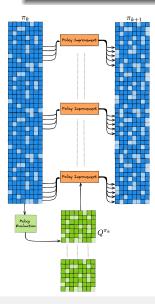
• Improvement: $\mathcal{O}(|\mathcal{S}| |\mathcal{A}|)$

♠ Iteration can be very expensive for large state space problem ♠

> Can we design algorithms with cheap iterations, while enjoying similar convergence as batch PG methods?

BPMD - Stochastic Variants 00000000 Numerical Study

What can be overlooked?



- Both policy improvement and evaluation need to conducted for every state (*batch PG*)
- Per-iteration computation:
 - Evaluation:

 $\mathcal{O}(\mathrm{MatInv}(|\mathcal{S}|) + |\mathcal{S}| |\mathcal{A}|)$ (known model) $\mathcal{O}(|\mathcal{S}| |\mathcal{A}| / \mathrm{err})$ (unknown model)

• Improvement: $\mathcal{O}(|\mathcal{S}| |\mathcal{A}|)$

♠ Iteration can be very expensive for large state space problem ♠

> Can we design algorithms with cheap iterations, while enjoying similar convergence as batch PG methods?

PMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Presentation Outline

1 Introduction

- **2** BPMD Deterministic Variants
 - Basic BPMD
 - Approximate BPMD

3 BPMD - Stochastic Variants

- Basic SBPMD
- Approximate SBPMD

4 Numerical Study

	BPMD - Deterministic Variants		
00000	000000	0000000	000000

Part I: Deterministic BPMD Methods

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Basic BPMD Method

Idea: blending policy optimization with block coordinate descent

Algorithm The block policy mirror descent (BPMD) method

Input: Initial policy π_0 , and stepsizes $\{\eta_k\}_{k\geq 0}$ for $k = 0, 1, \dots$ do Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$ Update policy: $\pi_{k+1}(\cdot|s_{i_k}) = \operatorname*{argmin}_{p(\cdot|s_{i_k})\in \Delta_{|\mathcal{A}|}} \eta_k [\langle Q^{\pi_k}(s_{i_k}, \cdot), p(\cdot|s_{i_k}) \rangle + h^p(s_{i_k})]$ end for

end for

• $D_{\pi'}^{\pi}(s) \coloneqq \operatorname{KL}(\pi(\cdot|s) \| \pi'(\cdot|s))$

• Only a single state is updated at each iteration

- Evaluating $Q^{\pi_k}(s_{i_k},\cdot)$ reduces to $\mathrm{MatVecMult}(|\mathcal{S}|)$ by exploiting sparse update
- Cheap policy evaluation and policy improvement
- Can be extended to multi-state update

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Basic BPMD Method

Idea: blending policy optimization with block coordinate descent

Algorithm The block policy mirror descent (BPMD) method

Input: Initial policy
$$\pi_0$$
, and stepsizes $\{\eta_k\}_{k\geq 0}$
for $k = 0, 1, ...$ do
Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$
Update policy:
 $\pi_{k+1}(\cdot|s_{i_k}) = \operatorname*{argmin}_{p(\cdot|s_{i_k})\in \Delta_{|\mathcal{A}|}} \eta_k \left[\langle Q^{\pi_k}(s_{i_k}, \cdot), p(\cdot|s_{i_k}) \rangle + h^p(s_{i_k}) \right] + D^p_{\pi_k}(s_{i_k})$
and for

- end for
- $D_{\pi'}^{\pi}(s) \coloneqq \operatorname{KL}(\pi(\cdot|s) \| \pi'(\cdot|s))$

• Only a single state is updated at each iteration

- Evaluating $Q^{\pi_k}(s_{i_k},\cdot)$ reduces to $\mathrm{MatVecMult}(|\mathcal{S}|)$ by exploiting sparse update
- Cheap policy evaluation and policy improvement
- Can be extended to multi-state update

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Basic BPMD Method

Idea: blending policy optimization with block coordinate descent

Algorithm The block policy mirror descent (BPMD) method

Input: Initial policy
$$\pi_0$$
, and stepsizes $\{\eta_k\}_{k\geq 0}$
for $k = 0, 1, ...$ do
Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$
Update policy:
 $\pi_{k+1}(\cdot|s_{i_k}) = \operatorname*{argmin}_{p(\cdot|s_{i_k})\in \Delta_{|\mathcal{A}|}} \eta_k \left[\langle Q^{\pi_k}(s_{i_k}, \cdot), p(\cdot|s_{i_k}) \rangle + h^p(s_{i_k}) \right] + D^p_{\pi_k}(s_{i_k})$
and for

end for

- $D_{\pi'}^{\pi}(s) \coloneqq \operatorname{KL}(\pi(\cdot|s) || \pi'(\cdot|s))$
- Only a single state is updated at each iteration
 - Evaluating $Q^{\pi_k}(s_{i_k},\cdot)$ reduces to $\mathrm{MatVecMult}(|\mathcal{S}|)$ by exploiting sparse update
 - Cheap policy evaluation and policy improvement
- Can be extended to multi-state update

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Basic BPMD Method

Idea: blending policy optimization with block coordinate descent

Algorithm The block policy mirror descent (BPMD) method

Input: Initial policy
$$\pi_0$$
, and stepsizes $\{\eta_k\}_{k\geq 0}$
for $k = 0, 1, ...$ do
Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$
Update policy:
 $\pi_{k+1}(\cdot|s_{i_k}) = \operatorname*{argmin}_{p(\cdot|s_{i_k})\in \Delta_{|\mathcal{A}|}} \eta_k \left[\langle Q^{\pi_k}(s_{i_k}, \cdot), p(\cdot|s_{i_k}) \rangle + h^p(s_{i_k}) \right] + D^p_{\pi_k}(s_{i_k})$
and for

end for

- $D_{\pi'}^{\pi}(s) \coloneqq \operatorname{KL}(\pi(\cdot|s) || \pi'(\cdot|s))$
- Only a single state is updated at each iteration
 - Evaluating $Q^{\pi_k}(s_{i_k},\cdot)$ reduces to $\mathrm{MatVecMult}(|\mathcal{S}|)$ by exploiting sparse update
 - Cheap policy evaluation and policy improvement
- Can be extended to multi-state update

```
Introduction
00000
```

BPMD - Stochastic Variants 00000000 Numerical Study

Multi-state Variant

Algorithm BPMD with Multi-state Update

Input: Initial policy π_0 , and stepsizes $\{\eta_k\}_{k\geq 0}$ for k = 0, 1, ... do Sample \mathcal{B}_k uniformly from $[|\mathcal{S}|]$ w.o. replacement Update policy: $\pi_{k+1}(\cdot|s_{i_k}) = \underset{p(\cdot|s_{i_k})\in\Delta_{|\mathcal{A}|}}{\operatorname{argmin}} \eta_k [\langle Q^{\pi_k}(s_{i_k}, \cdot), p(\cdot|s_{i_k}) \rangle + h^p(s_{i_k})] + D_{\pi_k}^p(s_{i_k}), \ \forall i_k \in \mathcal{B}_k$

end for

• Recovers PMD when $\mathcal{B}_k = [|\mathcal{S}|]$

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Convergence of Basic BPMD

Strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose *h* satisfies $\mu > 0$. Let $\eta_t = \eta$ for all $t \ge 0$, where $\eta > 0$ satisfies $1 + \eta\mu \ge \frac{1}{\gamma}$, then BPMD satisfies

$$\mathbb{E}\left[\left(f(\pi_k) - f(\pi^*)\right) + \mu \phi(\pi_k, \pi^*)\right]$$

$$\leq \left(1 - \frac{1-\gamma}{|\mathcal{S}|}\right)^k \left[f(\pi_0) - f(\pi^*) + \frac{\mu}{1-\gamma} \log |\mathcal{A}|\right]$$

- $\mathcal{O}(\frac{|\mathcal{S}|}{1-\gamma}\log(\frac{1}{\epsilon}))$ iterations to find ϵ -optimal policy
- $\mathcal{O}(\frac{|\mathcal{S}|}{(1-\gamma)B}\log(\frac{1}{\epsilon}))$ for multi-state update $(|\mathcal{B}_k| = B)$

• Recovers the rate of PMD when $\mathcal{B}_k = [|\mathcal{S}|]$

• # policy updates matches best batch PG method (Cen et al. '20, Lan '21)

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Convergence of Basic BPMD

Strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose *h* satisfies $\mu > 0$. Let $\eta_t = \eta$ for all $t \ge 0$, where $\eta > 0$ satisfies $1 + \eta\mu \ge \frac{1}{\gamma}$, then BPMD satisfies

$$\mathbb{E}\left[\left(f(\pi_k) - f(\pi^*)\right) + \mu \phi(\pi_k, \pi^*)\right]$$

$$\leq \left(1 - \frac{1-\gamma}{|\mathcal{S}|}\right)^k \left[f(\pi_0) - f(\pi^*) + \frac{\mu}{1-\gamma} \log |\mathcal{A}|\right]$$

- $\mathcal{O}(\frac{|\mathcal{S}|}{1-\gamma}\log(\frac{1}{\epsilon}))$ iterations to find ϵ -optimal policy
- $\mathcal{O}(\frac{|\mathcal{S}|}{(1-\gamma)B}\log(\frac{1}{\epsilon}))$ for multi-state update ($|\mathcal{B}_k| = B$)
 - Recovers the rate of PMD when $\mathcal{B}_k = [|\mathcal{S}|]$
- # policy updates matches best batch PG method (Cen et al. '20, Lan '21)

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Convergence of Basic BPMD

Strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose *h* satisfies $\mu > 0$. Let $\eta_t = \eta$ for all $t \ge 0$, where $\eta > 0$ satisfies $1 + \eta\mu \ge \frac{1}{\gamma}$, then BPMD satisfies

$$\mathbb{E}\left[\left(f(\pi_k) - f(\pi^*)\right) + \mu \phi(\pi_k, \pi^*)\right]$$

$$\leq \left(1 - \frac{1-\gamma}{|\mathcal{S}|}\right)^k \left[f(\pi_0) - f(\pi^*) + \frac{\mu}{1-\gamma} \log |\mathcal{A}|\right]$$

- $\mathcal{O}(\frac{|\mathcal{S}|}{1-\gamma}\log(\frac{1}{\epsilon}))$ iterations to find ϵ -optimal policy
- $\mathcal{O}(\frac{|\mathcal{S}|}{(1-\gamma)B}\log(\frac{1}{\epsilon}))$ for multi-state update ($|\mathcal{B}_k| = B$)
 - Recovers the rate of PMD when $\mathcal{B}_k = [|\mathcal{S}|]$
- # policy updates matches best batch PG method (Cen et al. '20, Lan '21)

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Convergence of Basic BPMD

Non-strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose *h* satisfies $\mu = 0$. Let $\eta_t = \eta$ for any $\eta > 0$ and all $k \ge 0$, then BPMD satisfies

$$\mathbb{E}\left[f(\pi_k) - f(\pi^*)\right] \le \frac{|\mathcal{S}|\left[\eta\left(f(\pi_0) - f(\pi^*)\right) + \log|\mathcal{A}|\right]}{\eta(1-\gamma)k}$$

• $\mathcal{O}(\frac{|\mathcal{S}|}{(1-\gamma)\epsilon})$ number of iteration to find ϵ -optimal policy

• Slow rate! Batch PG can converge linearly

Can we accelerate the sublinear convergence?

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Convergence of Basic BPMD

Non-strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose *h* satisfies $\mu = 0$. Let $\eta_t = \eta$ for any $\eta > 0$ and all $k \ge 0$, then BPMD satisfies

$$\mathbb{E}\left[f(\pi_k) - f(\pi^*)\right] \le \frac{|\mathcal{S}|\left[\eta\left(f(\pi_0) - f(\pi^*)\right) + \log|\mathcal{A}|\right]}{\eta(1-\gamma)k}$$

- $\mathcal{O}(\frac{|\mathcal{S}|}{(1-\gamma)\epsilon})$ number of iteration to find ϵ -optimal policy
- Slow rate! Batch PG can converge linearly

Can we accelerate the sublinear convergence?

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

The Approximate BPMD Method

Conceptual Idea

Solves a sequence of entropy-regularized MDPs with diminishing regularization

Perturbed MDP - $\mathcal{M}(\mathcal{S}, \mathcal{A}, \mathbb{P}, \gamma, c, h, \tau)$:

- Cost perturbation: $c^{\pi}_{\tau}(s,a) = c^{\pi}(s,a) + \tau D^{\pi}_{\pi_0}(s)$
- Uniform policy π_0 yields entropy regularization

*
$$Q^{\pi}_{\tau}(s, a) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t}(c^{\pi}(s_{t}, a_{t}) + h^{\pi}(s_{t}) + \tau D^{\pi}_{\pi_{0}}(s_{t}))|_{s_{0}} = s, a_{0} = a]$$

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

The Approximate BPMD Method

Conceptual Idea

Solves a sequence of entropy-regularized MDPs with diminishing regularization

Perturbed MDP - $\mathcal{M}(\mathcal{S}, \mathcal{A}, \mathbb{P}, \gamma, c, h, \tau)$:

- Cost perturbation: $c^{\pi}_{\tau}(s,a) = c^{\pi}(s,a) + \tau D^{\pi}_{\pi_0}(s)$
- Uniform policy π_0 yields entropy regularization

$$\star \quad Q^{\pi}_{\tau}(s,a) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t}(c^{\pi}(s_{t},a_{t}) + h^{\pi}(s_{t}) + \tau D^{\pi}_{\pi_{0}}(s_{t}))|s_{0} = s, a_{0} = a]$$

The Approximate BPMD Method

Algorithm The Approximate BPMD method

Input: Initial policy π_0 , perturbation parameters $\{\tau_k\}_{k\geq 0}$, and stepsizes $\{\eta_k\}_{k>0}$ for k = 0, 1, ... do Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$ Update policy: $\pi_{k+1}(\cdot|s_{i_k}) = \operatorname{argmin} \quad \eta_k \left[\left\langle Q_{\tau_k}^{\pi_k}(s_{i_k}, \cdot), p(\cdot|s_{i_k}) \right\rangle + h^p(s_{i_k}) \right]$ $p(\cdot | \mathbf{s}_i, \cdot) \in \Delta_{|\Delta|}$ $+ \tau_k D^p_{\pi_0}(s_{i_k})] + D^p_{\pi_k}(s_{i_k})$

end for

• Warm-starting $\mathcal{M}(\mathcal{S}, \mathcal{A}, r, \gamma, \mathbb{P}, \tau_k)$ with $\mathcal{M}(\mathcal{S}, \mathcal{A}, r, \gamma, \mathbb{P}, \tau_{k-1})$

The Approximate BPMD Method

Algorithm The Approximate BPMD method

Input: Initial policy π_0 , perturbation parameters $\{\tau_k\}_{k\geq 0}$, and stepsizes $\{\eta_k\}_{k>0}$ for k = 0, 1, ... do Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$ Update policy: $\pi_{k+1}(\cdot|s_{i_k}) = \operatorname{argmin} \quad \eta_k \left[\left\langle Q_{\tau_k}^{\pi_k}(s_{i_k}, \cdot), p(\cdot|s_{i_k}) \right\rangle + h^p(s_{i_k}) \right]$ $p(\cdot | \mathbf{s}_i, \cdot) \in \Delta_{|\Delta|}$ $+ \tau_k D^p_{\pi_0}(s_{i_k})] + D^p_{\pi_i}(s_{i_k})$ end for

• Warm-starting $\mathcal{M}(\mathcal{S}, \mathcal{A}, r, \gamma, \mathbb{P}, \tau_k)$ with $\mathcal{M}(\mathcal{S}, \mathcal{A}, r, \gamma, \mathbb{P}, \tau_{k-1})$

At what rate should τ_k diminish?

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Convergence of Approximate BPMD

ABPMD for non-strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose $\mu = 0$ hold for h^{π} . Let $l = \lceil \log_{1-(1-\gamma)/|S|}(1/4) \rceil$, $\tau_t = 2^{-(\lfloor t/l \rfloor + 1)}$, and $1 + \eta_t \tau_t = \frac{1}{\gamma}$, then after k iterations,

$$\mathbb{E}\left[f(\pi_k) - f(\pi^*) + \tau_k \phi(\pi_k, \pi^*) / (1-\gamma)\right]$$

$$\leq 2^{-\lfloor \frac{k}{l} \rfloor} \left[f(\pi_0) - f(\pi^*) + 2\log|\mathcal{A}| / (1-\gamma)\right]$$

- Each regularized MDP solved by $l = O(|S| \log_{\gamma}(\frac{1}{4}))$ iterations
- $\mathcal{O}(\frac{|\mathcal{S}|}{1-\gamma}\log(\frac{1}{\epsilon}))$ iterations to find ϵ -optimal policy
- # policy updates matches best batch PG method (Lan '21)

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Convergence of Approximate BPMD

ABPMD for non-strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose $\mu = 0$ hold for h^{π} . Let $l = \lceil \log_{1-(1-\gamma)/|S|}(1/4) \rceil$, $\tau_t = 2^{-(\lfloor t/l \rfloor + 1)}$, and $1 + \eta_t \tau_t = \frac{1}{\gamma}$, then after k iterations,

$$\mathbb{E}\left[f(\pi_k) - f(\pi^*) + \tau_k \phi(\pi_k, \pi^*) / (1-\gamma)\right]$$

$$\leq 2^{-\lfloor \frac{k}{l} \rfloor} \left[f(\pi_0) - f(\pi^*) + 2\log|\mathcal{A}| / (1-\gamma)\right]$$

- Each regularized MDP solved by $l = O(|S| \log_{\gamma}(\frac{1}{4}))$ iterations
- $\mathcal{O}(\frac{|\mathcal{S}|}{1-\gamma}\log(\frac{1}{\epsilon}))$ iterations to find ϵ -optimal policy
- # policy updates matches best batch PG method (Lan '21)

BPMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Convergence of Approximate BPMD

ABPMD for non-strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose $\mu = 0$ hold for h^{π} . Let $l = \lceil \log_{1-(1-\gamma)/|S|}(1/4) \rceil$, $\tau_t = 2^{-(\lfloor t/l \rfloor + 1)}$, and $1 + \eta_t \tau_t = \frac{1}{\gamma}$, then after k iterations,

$$\mathbb{E}\left[f(\pi_k) - f(\pi^*) + \tau_k \phi(\pi_k, \pi^*) / (1-\gamma)\right]$$

$$\leq 2^{-\lfloor \frac{k}{l} \rfloor} \left[f(\pi_0) - f(\pi^*) + 2\log|\mathcal{A}| / (1-\gamma)\right]$$

- Each regularized MDP solved by $l = O(|S| \log_{\gamma}(\frac{1}{4}))$ iterations
- $\mathcal{O}(\frac{|\mathcal{S}|}{1-\gamma}\log(\frac{1}{\epsilon}))$ iterations to find ϵ -optimal policy
- # policy updates matches best batch PG method (Lan '21)

BPMD - Deterministic Variants	BPMD - Stochastic Variants	
	0000000	

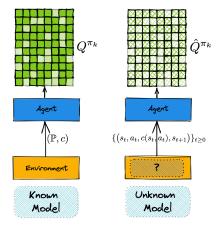
Part II: Stochastic BPMD Methods

3PMD - Deterministic Variants 00000000 BPMD - Stochastic Variants

Numerical Study

The Stochastic Variants

Unknown Environment: obtaining exact Q^{π} can be impractical



Policy update: replace Q^{π} with sample estimate $Q^{\pi,\xi}$

BPMD - Deterministic Variants 00000000 BPMD - Stochastic Variants

Numerical Study

Basic Stochastic BPMD Method

Algorithm Stochastic BPMD (SBPMD)

Input: Initial policy π_0 , and stepsizes $\{\eta_k\}_{k\geq 0}$. for $k = 0, 1, \dots$ do Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$. Update policy: $\pi_{k+1}(\cdot|s_{i_k}) = \underset{p(\cdot|s_{i_k})\in\Delta_{|\mathcal{A}|}}{\operatorname{argmin}} \eta_k [\langle Q^{\pi_k,\xi_k,i_k}(s_{i_k},\cdot), p(\cdot|s_{i_k}) \rangle + h^p(s_{i_k})] + D^p_{\pi_k}(s_{i_k})$

end for

• Construction of Q^{π_k,ξ_k,i_k} can depend on i_k

What conditions should Q^{π_k,ξ_k,i_k} satisfy?

BPMD - Deterministic Variants 00000000 BPMD - Stochastic Variants

Numerical Study

Basic Stochastic BPMD Method

Algorithm Stochastic BPMD (SBPMD)

Input: Initial policy π_0 , and stepsizes $\{\eta_k\}_{k\geq 0}$. for $k = 0, 1, \dots$ do Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$. Update policy: $\pi_{k+1}(\cdot|s_{i_k}) = \underset{p(\cdot|s_{i_k})\in \Delta_{|\mathcal{A}|}}{\operatorname{argmin}} \eta_k [\langle Q^{\pi_k,\xi_k,i_k}(s_{i_k},\cdot), p(\cdot|s_{i_k}) \rangle + h^p(s_{i_k})] + D^p_{\pi_k}(s_{i_k})$ end for

end for

• Construction of Q^{π_k,ξ_k,i_k} can depend on i_k

What conditions should Q^{π_k,ξ_k,i_k} satisfy?

3PMD - Deterministic Variants 00000000 BPMD - Stochastic Variants

Numerical Study

Conditions on the Noisy Estimate

$$\begin{split} \mathbb{E}_{\xi_k|i_k} \left[Q^{\pi_k,\xi_k,i_k}(s_{i_k},\cdot) \right] &= \overline{Q}^{\pi_k,i_k}(s_{i_k},\cdot) \\ \mathbb{E}_{i_k} \| \overline{Q}^{\pi_k,i_k}(s_{i_k},\cdot) - Q^{\pi_k}(s_{i_k},\cdot) \|_{\infty}^2 \leq v_k^2 \quad \text{(averaged conditional bias)} \\ \mathbb{E}_{\xi_k,i_k} \left[\| Q^{\pi_k,\xi_k,i_k}(s_{i_k},\cdot) - Q^{\pi_k}(s_{i_k},\cdot) \|_{\infty}^2 \right] \leq \sigma_k^2 \text{ (averaged conditional MSE)} \end{split}$$

Implication for evaluation



 \clubsuit Okay to have bad estimates for some states - error gets averaged out \clubsuit

3PMD - Deterministic Variants 00000000 BPMD - Stochastic Variants

Numerical Study

Convergence of Basic SBPMD

Strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose h satisfies $\mu > 0$, and $v_t = 2^{-(\lfloor t/l \rfloor + 2)}$, $\sigma_t^2 = 2^{-(\lfloor t/l \rfloor + 2)}$, where $l = \lceil \log_{1-(1-\gamma)/|\mathcal{S}|} \frac{1}{4} \rceil$. Take constant stepsize $\eta_t = \eta > 0$ for all $t \ge 0$, with $1 + \mu\eta = \frac{1}{\gamma}$. Then $\mathbb{E} \left[f(\pi_k) - f(\pi^*) + \frac{\mu}{1-\gamma} \phi(\pi_k, \pi^*) \right]$ $\leq 2^{-\lfloor \frac{k}{l} \rfloor} \left[f(\pi_0) - f(\pi^*) + \frac{\mu \log |\mathcal{A}|}{1-\gamma} + \frac{5|\mathcal{S}|}{4(1-\gamma)} \left(\frac{1}{2\gamma\mu} + 2 \right) \right]$

- Linear convergence with exponentially diminishing noise
 - Typically requires # samples growing exponentially w.r.t. iteration
- $\mathcal{O}(1/\mu k)$ convergence with constant noise
- $\mathcal{O}(1/\sqrt{k})$ convergence when $\mu=0$

3PMD - Deterministic Variants 00000000 BPMD - Stochastic Variants

Numerical Study

Convergence of Basic SBPMD

Strongly convex regularizers

Theorem (Lan, Li, Zhao '22)

Suppose h satisfies $\mu > 0$, and $v_t = 2^{-(\lfloor t/l \rfloor + 2)}$, $\sigma_t^2 = 2^{-(\lfloor t/l \rfloor + 2)}$, where $l = \lceil \log_{1-(1-\gamma)/|S|} \frac{1}{4} \rceil$. Take constant stepsize $\eta_t = \eta > 0$ for all $t \ge 0$, with $1 + \mu \eta = \frac{1}{\gamma}$. Then $\mathbb{E} \left[f(\pi_k) - f(\pi^*) + \frac{\mu}{1-\gamma} \phi(\pi_k, \pi^*) \right]$ $\leq 2^{-\lfloor \frac{k}{l} \rfloor} \left[f(\pi_0) - f(\pi^*) + \frac{\mu \log |\mathcal{A}|}{1-\gamma} + \frac{5|S|}{4(1-\gamma)} \left(\frac{1}{2\gamma\mu} + 2 \right) \right]$

- Linear convergence with exponentially diminishing noise
 - Typically requires # samples growing exponentially w.r.t. iteration
- $\mathcal{O}(1/\mu k)$ convergence with constant noise
- $\mathcal{O}(1/\sqrt{k})$ convergence when $\mu = 0$

BPMD - Deterministic Variants

BPMD - Stochastic Variants

Numerical Study

Stochastic Approximate BPMD Method

SABPMD for non-strongly convex regularizers

Algorithm Stochastic Approximate BPMD (SABPMD)

Input: Initial policy π_0 , and stepsizes $\{\eta_k\}_{k\geq 0}$. for $k = 0, 1, \dots$ do Sample $i_k \sim \text{Unif}([|\mathcal{S}|])$. Update policy: $\pi_{k+1}(\cdot|s_{i_k}) = \underset{p(\cdot|s_{i_k})\in \Delta_{|\mathcal{A}|}}{\operatorname{argmin}} \eta_k \left[\left\langle Q_{\tau_k}^{\pi_k,\xi_k,i_k}(s_{i_k},\cdot), p(\cdot|s_{i_k}) \right\rangle + h^p(s_{i_k}) + \tau_k D_{\pi_0}^p(s_{i_k}) \right] + D_{\pi_k}^p(s_{i_k})$ end for

end for

• Same as ABPMD, except the stochastic estimate of Q^{π}_{τ}

3PMD - Deterministic Variants 0000000 BPMD - Stochastic Variants

Numerical Study

Convergence of Stochastic Approximate BPMD

Theorem (Lan, Li, Zhao '22)

Suppose $\mu = 0$ holds for *h*. Suppose $\sigma_t^2 = 4^{-(\lfloor t/l \rfloor + 2)}, v_t = 2^{-(\lfloor t/l \rfloor + 2)}$, where $l = \lceil \log_{1-(1-\gamma)/|S|}(1/4) \rceil$. Let $\tau_t = 2^{-(\lfloor t/l \rfloor + 1)}$ and $1 + \eta_t \tau_t = \frac{1}{\gamma}$, then $\mathbb{E} \left[f(\pi_k) - f(\pi^*) + \frac{\tau_k}{1-\gamma} \phi(\pi_k, \pi^*) \right]$ $\leq 2^{-\lfloor \frac{k}{l} \rfloor} \left[f(\pi_0) - f(\pi^*) + \frac{2 \log |\mathcal{A}|}{1-\gamma} + \frac{5|S|}{4(1-\gamma)} \left(\frac{1}{2\gamma} + 1 \right) \right]$

- Linear convergence with exponentially diminishing noise
 - Typically requires # samples growing exponentially w.r.t. iteration

BPMD - Stochastic Variants

Numerical Study

Sample Complexity

Independent Trajectories

Theorem (Lan, Li, Zhao '22)

By using the method of independent trajectories (i.e., assuming generative model) for policy evaluation, the total number of samples of SABPMD can be bounded by

$$\mathcal{O}\left(\frac{|\mathcal{S}|^3|\mathcal{A}|\log|\mathcal{A}|}{(1-\gamma)^6\epsilon^2}\right)$$

Conditional Temporal Difference

Theorem (Lan, Li, Zhao '22)

By using conditional temporal difference learning (Kotsalis, Lan, Li) for policy evaluation, the total number of samples of SABPMD can be bounded by

$$\mathcal{O}\left(\frac{|\mathcal{S}|^3|\mathcal{A}|\log^2|\mathcal{A}|\log(1/\epsilon)}{(1-\gamma)^5\epsilon^2}\right)$$

- The dependence on $|\mathcal{S}|$ might be improvable suggested by experiments
 - Can also be improved by using multi-state update
 - $\bullet\,$ Stochastic coordinate descent method has worse sample complexity by a factor of # blocks
- At each iteration, samples required by SABPMD is significantly smaller than batch PG methods

BPMD - Stochastic Variants

Numerical Study

Sample Complexity

Independent Trajectories

Theorem (Lan, Li, Zhao '22)

By using the method of independent trajectories (i.e., assuming generative model) for policy evaluation, the total number of samples of SABPMD can be bounded by

 $\mathcal{O}\left(\frac{|\mathcal{S}|^3|\mathcal{A}|\log|\mathcal{A}|}{(1-\gamma)^6\epsilon^2}\right)$

Conditional Temporal Difference

Theorem (Lan, Li, Zhao '22)

By using conditional temporal difference learning (Kotsalis, Lan, Li) for policy evaluation, the total number of samples of SABPMD can be bounded by

$$\mathcal{O}\left(rac{|\mathcal{S}|^3|\mathcal{A}|\log^2|\mathcal{A}|\log(1/\epsilon)}{(1-\gamma)^5\epsilon^2}
ight)$$

- The dependence on $|\mathcal{S}|$ might be improvable suggested by experiments
 - Can also be improved by using multi-state update
 - $\bullet\,$ Stochastic coordinate descent method has worse sample complexity by a factor of # blocks
- At each iteration, samples required by SABPMD is significantly smaller than batch PG methods

BPMD - Stochastic Variants

Numerical Study

Sample Complexity

Independent Trajectories

Theorem (Lan, Li, Zhao '22)

By using the method of independent trajectories (i.e., assuming generative model) for policy evaluation, the total number of samples of SABPMD can be bounded by

 $\mathcal{O}\left(\frac{|\mathcal{S}|^3|\mathcal{A}|\log|\mathcal{A}|}{(1-\gamma)^6\epsilon^2}\right)$

Conditional Temporal Difference

Theorem (Lan, Li, Zhao '22)

By using conditional temporal difference learning (Kotsalis, Lan, Li) for policy evaluation, the total number of samples of SABPMD can be bounded by

$$\mathcal{O}\left(\frac{|\mathcal{S}|^3|\mathcal{A}|\log^2|\mathcal{A}|\log(1/\epsilon)}{(1-\gamma)^5\epsilon^2}\right)$$

- $\bullet\,$ The dependence on $|\mathcal{S}|$ might be improvable suggested by experiments
 - Can also be improved by using multi-state update
 - Stochastic coordinate descent method has worse sample complexity by a factor of # blocks
- At each iteration, samples required by SABPMD is significantly smaller than batch PG methods

BPMD - Stochastic Variants 00000000 Numerical Study

Part III: Numerical Study

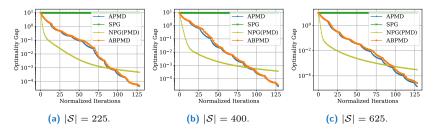
Guanghui Lan, Yan Li, Tuo Zhao — Block Policy Mirror Descent

3PMD - Deterministic Variants

BPMD - Stochastic Variants 00000000 Numerical Study

Deterministic Setting

Randomly Generated GridWorld Environments

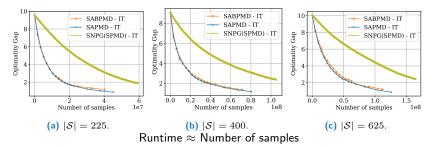


Policy Evaluation:

- Batch PG matrix inversion
- BPMD variants matrix-vector multiplication

BPMD - Deterministic Variants 00000000 BPMD - Stochastic Variants 00000000 Numerical Study

Policy Evaluation with Independent Trajectories



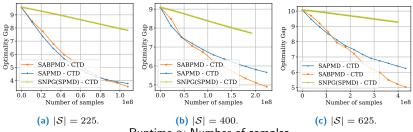
Policy Evaluation

Stochastic Setting – IT

- Batch PG $\mathcal{O}(|\mathcal{A}||\mathcal{S}|)$ samples
- BPMD variant $\mathcal{O}(|\mathcal{A}|)$ samples

BPMD - Deterministic Variants 00000000 BPMD - Stochastic Variants 00000000 Numerical Study

Stochastic Setting – CTD



Runtime \approx Number of samples

Policy Evaluation

- Batch PG $\mathcal{O}(|\mathcal{A}||\mathcal{S}|)$ samples
- BPMD variant $\mathcal{O}(|\mathcal{A}|)$ samples

3PMD - Deterministic Variants 00000000 BPMD - Stochastic Variants 00000000 Numerical Study

Cheap Per-Iteration Computation

Runtime when Executing the Last Iteration

Method	$ \mathcal{S} $	Q^{π} Estimation	# (seconds)
SABPMD	400	IT	2.9
SAPMD	400	IT	1192.6
SABPMD	625	IT	2.9
SAPMD	625	IT	1863.5
SABPMD	400	CTD	4.9
SAPMD	400	CTD	1976.5
SABPMD	625	CTD	5.1
SAPMD	625	CTD	3176.5

BPMD - Stochastic Variants 00000000

Conclusion

- BPMD variants with cheaper per-iteration complexity than batch PG methods
- Establish iteration complexities in deterministic/stochastic setting
- Establish sample complexities with two evaluation subroutines

Paper

• Lan, G., Li, Y. and Zhao, T., 2022. Block Policy Mirror Descent. arXiv preprint arXiv:2201.05756

What are still open?

- Dependence of sample complexities on the state space
- PMD (batch PG) + asynchronous policy update