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Introduction BPMD - Deterministic Variants BPMD - Stochastic Variants Numerical Study

Markov decision process

Key elements:

S: state space, finite

A: action space, finite

P: transition kernel

γ: discount factor

c, h: costs

Planning in M(S,A,P, γ, c, h):

min
π
V π(s) := Eπ[

∑∞
t=0 γ

t (c(st, at) + hπ(st))︸ ︷︷ ︸
policy-dependent cost

∣∣s0 = s]

Regularizer hπ(s) is µ-strongly convex (µ ≥ 0) in π(·|s) for each s

hπ(s) =
∑
a∈A

π(a|s) log π(a|s) (negative entropy)

hπ(s) = 0 (standard MDP)
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A Conceptual Recap on Policy Gradient Methods

Single-objective:

f(π) =
∑
s∈S

ν∗(s)V π(s)

? nonconvex

Policy evaluation:
? matrix inversion
? TD / simulator

Policy improvement:
? policy gradient
? natural policy gradient

Q-function table: Qπ ∈ R|S|×|A| defined as

Qπ(s, a) = Eπ
[∑∞

t=0 γ
t (c(st, at) + hπ(st))

∣∣s0 = s, a0 = a
]
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Recent developments on Policy Gradient

Possibly even earlier ..

Even-Dar, Kakade, Mansour ’09: O(1/
√
T ) regret of NPG

Agarwal, Kakade, Lee, Mahajan ’19: O(1/T ) of NPG
technique inspired by Even-Dar, Kakade, Mansour ’09

Cen, Cheng, Chen, Wei, Chi ’20: linear convergence of NPG for entropy
regularized MDPs

Lan ’21: (approximate) policy mirror descent
linear convergence of NPG/PMD for entropy regularized MDPs
linear convergence of APMD for standard MDPs
linear convergence of stochastic variants and optimal sample complexity

Khodadadian, Jhunjhunwala, Varma, Maguluri ’21: linear convergence of
NPG with adaptive stepsize for standard MDPs

More recently ..

Li, Lan, Zhao ’22: homotopic policy mirror descent
linear convergence of standard MDPs, local superlinear convergence
last-iterate convergence of the policy

Xiao ’22: linear convergence of NPG/PMD with increasing stepsize

And many more ...
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What can be overlooked?

Both policy improvement and evaluation need
to conducted for every state (batch PG)

Per-iteration computation:
Evaluation:

O(MatInv(|S|) + |S| |A|) (known model)

O(|S| |A| /err) (unknown model)

Improvement: O(|S| |A|)

♠ Iteration can be very expensive for large state
space problem ♠

Can we design algorithms with cheap
iterations, while enjoying similar

convergence as batch PG methods?
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Presentation Outline

1 Introduction

2 BPMD - Deterministic Variants
Basic BPMD
Approximate BPMD

3 BPMD - Stochastic Variants
Basic SBPMD
Approximate SBPMD

4 Numerical Study
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Part I: Deterministic BPMD Methods
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Basic BPMD Method

Idea: blending policy optimization with block coordinate descent

Algorithm The block policy mirror descent (BPMD) method

Input: Initial policy π0, and stepsizes {ηk}k≥0

for k = 0, 1, . . . do
Sample ik ∼ Unif([|S|])
Update policy:

πk+1(·|sik ) = argmin
p(·|sik )∈∆|A|

ηk [〈Qπk (sik , ·), p(·|sik )〉+ hp(sik )]

+Dp
πk

(sik )
end for

Dπ
π′(s) := KL(π(·|s)‖π′(·|s))

Only a single state is updated at each iteration
Evaluating Qπk (sik , ·) reduces to MatVecMult(|S|) by exploiting sparse
update
Cheap policy evaluation and policy improvement

Can be extended to multi-state update
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Multi-state Variant

Algorithm BPMD with Multi-state Update

Input: Initial policy π0, and stepsizes {ηk}k≥0

for k = 0, 1, . . . do
Sample Bk uniformly from [|S|] w.o. replacement
Update policy:

πk+1(·|sik ) = argmin
p(·|sik )∈∆|A|

ηk [〈Qπk (sik , ·), p(·|sik )〉+ hp(sik )]

+Dp
πk

(sik ), ∀ik ∈ Bk
end for

Recovers PMD when Bk = [|S|]
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Convergence of Basic BPMD

Strongly convex regularizers

Theorem (Lan, Li, Zhao ’22)

Suppose h satisfies µ > 0. Let ηt = η for all t ≥ 0, where η > 0 satisfies
1 + ηµ ≥ 1

γ
, then BPMD satisfies

E [(f(πk)− f(π∗)) + µφ(πk, π
∗)]

≤
(
1− 1−γ

|S|

)k [
f(π0)− f(π∗) + µ

1−γ log |A|
]

O( |S|
1−γ log( 1

ε
)) iterations to find ε-optimal policy

O( |S|
(1−γ)B

log( 1
ε
)) for multi-state update (|Bk| = B)

Recovers the rate of PMD when Bk = [|S|]

# policy updates matches best batch PG method (Cen et al. ’20, Lan ’21)
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Convergence of Basic BPMD

Non-strongly convex regularizers

Theorem (Lan, Li, Zhao ’22)

Suppose h satisfies µ = 0. Let ηt = η for any η > 0 and all k ≥ 0, then BPMD
satisfies

E [f(πk)− f(π∗)] ≤
|S|[η(f(π0)−f(π∗))+log|A|]

η(1−γ)k

O( |S|
(1−γ)ε

) number of iteration to find ε-optimal policy

Slow rate! Batch PG can converge linearly

Can we accelerate the sublinear convergence?
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The Approximate BPMD Method

Conceptual Idea

Solves a sequence of entropy-regularized MDPs with diminishing
regularization

Perturbed MDP - M(S,A,P, γ, c, h, τ):
Cost perturbation: cπτ (s, a) = cπ(s, a) + τDπ

π0
(s)

Uniform policy π0 yields entropy regularization

? Qπτ (s, a) = Eπ[
∑∞
t=0 γ

t(cπ(st, at) + hπ(st)

+ τDπ
π0
(st))|s0 = s, a0 = a]
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The Approximate BPMD Method

Algorithm The Approximate BPMD method

Input: Initial policy π0, perturbation parameters {τk}k≥0, and stepsizes
{ηk}k≥0

for k = 0, 1, . . . do
Sample ik ∼ Unif([|S|])
Update policy:

πk+1(·|sik ) = argmin
p(·|sik )∈∆|A|

ηk
[ 〈
Qπk
τk (sik , ·), p(·|sik )

〉
+ hp(sik )

+ τkD
p
π0
(sik )

]
+Dp

πk
(sik )

end for

Warm-starting M(S,A, r, γ,P, τk) with M(S,A, r, γ,P, τk−1)

At what rate should τk diminish?
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Convergence of Approximate BPMD

ABPMD for non-strongly convex regularizers

Theorem (Lan, Li, Zhao ’22)

Suppose µ = 0 hold for hπ. Let l = dlog1−(1−γ)/|S|(1/4)e, τt = 2−(bt/lc+1),

and 1 + ηtτt =
1
γ

, then after k iterations,

E [f(πk)− f(π∗) + τkφ(πk, π
∗)/(1− γ)]

≤2−b
k
l
c [f(π0)− f(π∗) + 2 log |A| /(1− γ)]

Each regularized MDP solved by l = O(|S| logγ( 1
4
)) iterations

O( |S|
1−γ log( 1

ε
)) iterations to find ε-optimal policy

# policy updates matches best batch PG method (Lan ’21)
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Part II: Stochastic BPMD Methods
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The Stochastic Variants

Unknown Environment: obtaining exact Qπ can be impractical

Policy update: replace Qπ with sample estimate Qπ,ξ
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Basic Stochastic BPMD Method

Algorithm Stochastic BPMD (SBPMD)

Input: Initial policy π0, and stepsizes {ηk}k≥0.
for k = 0, 1, . . . do

Sample ik ∼ Unif([|S|]).
Update policy:

πk+1(·|sik ) = argmin
p(·|sik )∈∆|A|

ηk
[ 〈
Qπk,ξk,ik (sik , ·), p(·|sik )

〉
+ hp(sik )

]
+Dp

πk
(sik )

end for

Construction of Qπk,ξk,ik can depend on ik

What conditions should Qπk,ξk,ik satisfy?
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Conditions on the Noisy Estimate

Eξk|ik
[
Qπk,ξk,ik (sik , ·)

]
= Q

πk,ik (sik , ·)

Eik‖Q
πk,ik (sik , ·)−Q

πk (sik , ·)‖
2
∞ ≤ υ2

k (averaged conditional bias)

Eξk,ik
[
‖Qπk,ξk,ik (sik , ·)−Q

πk (sik , ·)‖
2
∞

]
≤ σ2

k (averaged conditional MSE)

Implication for evaluation

♣ Okay to have bad estimates for some states - error gets averaged out ♣
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Convergence of Basic SBPMD

Strongly convex regularizers

Theorem (Lan, Li, Zhao ’22)

Suppose h satisfies µ > 0, and υt = 2−(bt/lc+2), σ2
t = 2−(bt/lc+2), where

l = dlog1−(1−γ)/|S|
1
4
e. Take constant stepsize ηt = η > 0 for all t ≥ 0, with

1 + µη = 1
γ

. Then

E
[
f(πk)− f(π∗) + µ

1−γφ(πk, π
∗)
]

≤2−b
k
l
c
[
f(π0)− f(π∗) + µ log|A|

1−γ + 5|S|
4(1−γ)

(
1

2γµ
+ 2
)]

Linear convergence with exponentially diminishing noise
Typically requires # samples growing exponentially w.r.t. iteration

O(1/µk) convergence with constant noise

O(1/
√
k) convergence when µ = 0
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Stochastic Approximate BPMD Method

SABPMD for non-strongly convex regularizers

Algorithm Stochastic Approximate BPMD (SABPMD)

Input: Initial policy π0, and stepsizes {ηk}k≥0.
for k = 0, 1, . . . do

Sample ik ∼ Unif([|S|]).
Update policy:
πk+1(·|sik ) = argmin

p(·|sik )∈∆|A|

ηk
[ 〈
Qπk,ξk,ik
τk (sik , ·), p(·|sik )

〉
+ hp(sik )

+ τkD
p
π0
(sik )

]
+Dp

πk
(sik )

end for

Same as ABPMD, except the stochastic estimate of Qπτ
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Convergence of Stochastic Approximate BPMD

Theorem (Lan, Li, Zhao ’22)

Suppose µ = 0 holds for h. Suppose σ2
t = 4−(bt/lc+2), υt = 2−(bt/lc+2), where

l = dlog1−(1−γ)/|S|(1/4)e. Let τt = 2−(bt/lc+1) and 1 + ηtτt =
1
γ

, then

E
[
f(πk)− f(π∗) + τk

1−γφ(πk, π
∗)
]

≤2−b
k
l
c
[
f(π0)− f(π∗) + 2 log|A|

1−γ + 5|S|
4(1−γ)

(
1

2γ
+ 1
)]

Linear convergence with exponentially diminishing noise
Typically requires # samples growing exponentially w.r.t. iteration
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Sample Complexity

Independent Trajectories

Theorem (Lan, Li, Zhao ’22)

By using the method of independent
trajectories (i.e., assuming generative
model) for policy evaluation, the total
number of samples of SABPMD can
be bounded by

O
(
|S|3|A| log|A|

(1−γ)6ε2

)

Conditional Temporal Difference

Theorem (Lan, Li, Zhao ’22)

By using conditional temporal
difference learning (Kotsalis, Lan, Li)
for policy evaluation, the total
number of samples of SABPMD can
be bounded by

O
(
|S|3|A| log2|A| log(1/ε)

(1−γ)5ε2

)
The dependence on |S| might be improvable suggested by experiments

Can also be improved by using multi-state update
Stochastic coordinate descent method has worse sample complexity by a
factor of # blocks

At each iteration, samples required by SABPMD is significantly smaller
than batch PG methods
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Part III: Numerical Study
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Deterministic Setting

Randomly Generated GridWorld Environments
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(a) |S| = 225.
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(b) |S| = 400.
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(c) |S| = 625.

Policy Evaluation:

Batch PG – matrix inversion

BPMD variants – matrix-vector multiplication
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Stochastic Setting – IT

Policy Evaluation with Independent Trajectories
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(a) |S| = 225.
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(b) |S| = 400.
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(c) |S| = 625.

Runtime ≈ Number of samples

Policy Evaluation

Batch PG - O(|A| |S|) samples

BPMD variant - O(|A|) samples
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Stochastic Setting – CTD

Policy Evaluation with CTD
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(a) |S| = 225.

0.0 0.5 1.0 1.5 2.0
Number of samples 1e8

5

6

7

8

9

O
pt

im
al

ity
 G

ap
SABPMD - CTD
SAPMD - CTD
SNPG(SPMD) - CTD

(b) |S| = 400.
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(c) |S| = 625.

Runtime ≈ Number of samples

Policy Evaluation

Batch PG - O(|A| |S|) samples

BPMD variant - O(|A|) samples
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Cheap Per-Iteration Computation

Runtime when Executing the Last Iteration

Method |S| Qπ Estimation # (seconds)
SABPMD 400 IT 2.9
SAPMD 400 IT 1192.6

SABPMD 625 IT 2.9
SAPMD 625 IT 1863.5

SABPMD 400 CTD 4.9
SAPMD 400 CTD 1976.5

SABPMD 625 CTD 5.1
SAPMD 625 CTD 3176.5
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Conclusion

BPMD variants with cheaper per-iteration complexity than batch PG
methods

Establish iteration complexities in deterministic/stochastic setting

Establish sample complexities with two evaluation subroutines

Paper

Lan, G., Li, Y. and Zhao, T., 2022. Block Policy Mirror Descent. arXiv
preprint arXiv:2201.05756

What are still open?

Dependence of sample complexities on the state space

PMD (batch PG) + asynchronous policy update
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